
Inter-University Centre for Astronomy and Astrophysics Post-Bag 4, Ganeshkhind,
Pune 411007 MH, India

Exploring the Impact of Wave Effects in
the Lensing of Gravitational Waves from

Chirping Binaries
Candidate: Anuj Mishra

Supervisor: Prof. Gulab Dewangan
Co-Supervisor: Prof. Sukanta Bose and Dr. Anupreeta More

A thesis to be presented for the degree of
Doctor of Philosophy

to
Jawaharlal Nehru University, New Delhi, India



ii



 

                
           
           
     


        






15/11/2023



iv





vi





viii



Acknowledgments
I extendmyheartfelt gratitude tomy supervisor, Prof. Sukanta Bose, and co-supervisor,

Dr. Anupreeta More, for giving me the opportunity to work on this interesting and rele-
vant topic. Their mentorship has not only allowed me to contribute to this field but has
also played a pivotal role in my growth as a scientist. It has been an exciting journey,
from crawling to running to tumbling and falling down to standing again, having a life of
its own.

While keeping this acknowledgement brief, I must mention a few names who in-
spired me to pursue (astro)physics. It all started when I got hold of the book 'A Brief
History of Time' by Prof. Stephen Hawking when I was in seventh grade. Although I
couldn’t understand much, which is obvious, I did grasp some basic ideas that really made
me think and, more importantly, introduced me to the scientific method of reasoning. I
also want to express my gratitude to Prof. Thanu Padmanabhan (affectionately known
as Paddy) and Prof. V. Balakrishnan for their immense contribution to pedagogy through
their books and lectures. Their invaluable insights will benefit generations to come and
have greatly helped me in my own learning journey.

I am grateful to Prof. Subenoy Chakraborty for his instrumental role in kick-starting
my career in scientific writing. He offered me guidance when no one else did, and to-
gether, we authored my first paper on General Relativity. His unwavering support has
been crucial for my journey and has contributed significantly to where I am today. I
would also like to express my sincere thanks to my collaborators, Dr. Apratim Ganguly,
Dr. Ashish K. Meena, Dr. Nathan K. Johnson-McDaniel, and Dr. N.V. Krishnendu, who
played a crucial role in expanding my horizons and moulding me into a more meticulous
researcher along the way.

Special thanks tomy family, who always encouragedme to pursuewhatever I wanted
and for being very understanding and present whenever I needed them. Additionally, I
extend my thanks to ancient Indian wisdom, particularly in terms of yoga and the phi-
losophy of Upanishads (Vedanta), which kept me sane (well, for the most part of it!) and
inspired me to work for the sake of working.

Lastly, I extend my gratitude to my colleagues here at IUCAA, especially Bhaskar,
Bikram, Kanchan, Samanwaya, Tathagata, Supravo, and Vishal (in alphabetical order),
with whom I had a great time interacting. I am also thankful to my (unofficial) students,
Anirudh, Nishkal and Sreelakshmi, for providing me valuable mentoring experience. Ad-
ditionally, I express my gratitude to my other longtime friends: Ankit, Aritra, Deepak,
Gaurav, Junaid, Koustav, Sandeep and Tushar for so many things that are hard to list
here. Special thanks also to my piano teacher, Mrs. Sonam Lodhi, for keeping my jour-
ney enjoyable and for bringing out the best in me.

ix



x



Dedicated to all the giants on whose shoulders I stood; all the stars who die to make us
and this research field alive; and all the teachers who light our path.

xi



xii



उǺत्तष्ठत जाग्रत
प्राप्य वरा˃न्नबोधत ।
क्षुरस्य धारा िनʺशता दरुत्यया
दगुर्ं पथस्तत्कवयो वदȥन्त ॥ १४ ॥

Arise! Awake! Approach the great and learn. Like the sharp edge of a
razor is that path, so the wise say-hard to tread and difficult to cross.

- Katha Upanishad 1.3.14

xiii



xiv



Abstract

With increasing sensitivities of current ground-based gravitational wave (GW) detectors,
the prospects of detecting gravitationally lensed GW signals are poised to improve in the
coming years. While the lensing of GWs shares similarities with electromagnetic waves,
their observed effects can exhibit striking differences. This thesis delves into the impact
of wave-optics effects in gravitational lensing of GWs originating from compact binary
coalescence.

When a GW encounters compact objects, such as stars, stellar remnants, or possi-
ble compact dark matter objects like primordial black holes, it can lead to the emergence
of wave-optics effects. These effects result in frequency-dependent modulations of the
signal, which we refer to as 'microlensing.' In such cases, the geometrical optics approx-
imation breaks down, necessitating the consideration of the wave nature of propagation.
Consequently, these frequency-dependent modulations influence the GW strain, poten-
tially introducing biases if these lensing effects are not accounted for. This leads to natural
questions: When do these modulations become significant? What parameters can they
affect? How do these microlenses behave when embedded in a strong lens? What is their
impact on the physics extracted fromGW signals? Can they influence other GW analyses,
such as tests of general relativity (GR)? What are the prospects for their detection, and
what challenges are associated with such model comparison studies, and more?

In this thesis, I aim to answer these questions, with some of them being investigated
for the first time in the literature. I begin by demonstrating howmicrolensed signals affect
the detectability of GW signals from the perspective of standard matched-filter searches.
I find that while typical unlensed searches can significantly decrease the true SNR by over
30%, the presence of isolated microlenses consistently amplifies the GW signals they lens,
thereby extending the detection horizon to potentially distant sources, reaching as far
as redshifts z ∼ 10. I also discuss the consequences of neglecting microlensing effects
when inferring source properties. The phase modulations can significantly bias intrinsic
parameters, with in-plane spin components (precession) being the most affected. Sim-
ilarly, amplitude modulations often lead to the underestimation of luminosity distance,
by up to a factor of 10 in extreme cases. Study of a population of microlensed signals
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due to an isolated point lens primarily reveals: (i) using unlensed templates during the
search causes fractional loss (20% to 30%) of potentially identifiable microlensed signals;
(ii) Bayes factor analysis of the population indicates that certain region in MLz − y pa-
rameter space have a higher probability of being detected and accurately identified as
microlensed. Importantly, the microlens parameters for the most compelling candidate
in the third GW transient catalogue (GWTC-3), GW200208_130117, fall within a 1-sigma
range of the aforementioned high-probability region, favouring the microlensing hypoth-
esis. Furthermore, I explore more realistic scenarios involving microlensing, where a mi-
crolens or a population of stellar-mass microlenses is embedded in a strong gravitational
lens. I demonstrate how the presence of a strong lens can amplify microlensing effects,
effectively increasing the effective mass of microlenses. Consequently, I examine the im-
pact of the microlens population within lensing galaxies on strongly lensed GWs. I find
that microlensing atop strong lensing can lead to substantial biases as the strong lensing
magnification (µ) increases, with mismatch values exceeding 5% for |µ| > 100. Fur-
thermore, the presence of these microlensing features can also influence strong lensing
searches, potentially resulting in orders of magnitude drops in Bayes factors, measuring
the strength of the strong lensing hypothesis versus the unlensed hypothesis, especially
in extreme cases. Additionally, I investigate how microlensing effects can bias tests of
GR, with a confidence level even exceeding 5σ. I show how deviations from GR correlate
with pronounced interference effects and also discuss how one can identify such biases
to avoid (erroneous) claims of deviations from GR.

Lastly, I discuss how microlensing searches can be biased due to the presence of
other atypical physical effects, specifically, the presence of non-zero eccentricity in the
signal. I demonstrate the bias in microlensing searches and show that it monotonically
increases with increasing eccentricity, the duration of the signal (low mass binaries), and
the signal-to-noise ratio (SNR) of the signal. Furthermore, I demonstrate that the degener-
acy between microlensing and eccentricity can be broken, and the biases in microlensing
searches can be resolved by including eccentricity in the recovery process while doing
parameter estimation.
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Chapter 1

Where two novel predictions of General
Relativity meet - Gravitational Lensing
of Gravitational Waves

It has been more than a century since Albert Einstein formulated the General Theory of
Relativity (GR), one of the most beautiful and accurate theories in all of physics (Einstein
1916). Since its inception, GR has revolutionized our understanding of the universe and
has consistently passed the most precise experimental and observational tests with flying
colors (Will 2006; Asmodelle 2017). In this thesis, we explore the interplay of some of
its major predictions, which are now individually established fields of research, including
the existence of black holes (BHs), gravitational lensing (GL), gravitational waves (GWs),
and the Shapiro time delay. Elaboratively, we study the prospective scenario of GWs
originating frombinary black hole (BBH) systems and getting gravitationally lensed due to
intervening matter, potentially affected by additional perturbations from compact objects,
which can influence the Fermat potential and consequently the Shapiro time delay.

GL is a phenomenon that arises from the interaction between mass inhomogeneities
along the line of sight and the propagation of radiation (Einstein, Albert 1936; Zwicky
1937). From a mathematical point of view, the theory of GL is the theory of lightlike
geodesics in a Lorentzian manifold, which encodes the information of the gravitational
field in spacetime (Perlick 2010). Ever since the initial confirmation of predictions of GL in
1919 through observations of deflection and the subsequent discovery of multiple images
in 1979, as seen in the double quasar Q0957+561, GL has played a pivotal role in validating
GR, mapping dark matter distributions, measurement of Hubble constant, detection of ex-
oplanets, etc. While GL has been extensively observed in the context of light (Walsh et al.
1979; Soucail et al. 1988), its manifestation in the realm of GWs has yet to be detected (Han-
nuksela et al. 2019; Abbott, R. and others 2021; The LIGO Scientific Collaboration et al.
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2023a), albeit a few interesting candidates (Dai et al. 2020; Liu et al. 2021; Janquart et al.
2023). The detection of lensing signatures in GWs holds immense significance as they
will help to constrain fundamental physics (Mukherjee et al. 2020; Goyal et al. 2021), cos-
mological parameters (Liao et al. 2017; Jana et al. 2023), measure high-redshift merger
rates (Mukherjee et al. 2021), and enhance source localization (Hannuksela et al. 2020).

GWs are ripples in the structure of spacetime, stretching and squeezing space as
they travel across the universe. From a mathematical point of view, they are described by
the metric tensor perturbations, typically expressed as wave solutions to the linearized
Einstein equations in the weak-field limit. The existence of GWs was first established
observationally in 1981 through the indirect detection of gravitational radiation in the
Hulse-Taylor binary pulsar (Hulse & Taylor 1975; Weisberg et al. 1981). More recently,
with the detection of GW150914, a new era of direct detection of GWs started that opened
a whole new window to probe the Universe. The ground-based GW detector network
currently includes three major observatories: Laser Interferometer Gravitational-wave
Observatory (LIGO; Aasi et al. 2015), Virgo (Acernese et al. 2015), and the recently added
Kamioka GW Detector (KAGRA; Somiya 2012). GWs observed by current ground-based
detectors originate from some of the most violent events in the universe, such as compact
binary coalescences. Specifically, we focus on GWs originating from binary black hole
systems in this thesis. Direct detection of GW signals allows us to test various theories of
gravity (e.g., Abbott, B. P. and others 2016; Abbott et al. 2017a, 2019a, 2021b). Observation
of GW signals from BBHmergers lets us probe the properties of BHs in the Universe (e.g.,
Abbott et al. 2021c) and their possible contribution to the dark matter (e.g., Bird et al.
2016). BNS or BH-NS mergers also emit electromagnetic (EM) signal, in addition to GW
signal, which becomes an excellent tool for multi-messenger astrophysics (e.g., Poggiani
2019; Margutti & Chornock 2021). So far, a total of 90 GW signals have been detected
by LVK detector network coming from BBH, BNS and BH-NS mergers in the first three
observing runs (Abbott et al. 2019b, 2021a; The LIGO Scientific Collaboration et al. 2024;
Abbott et al. 2023). Many more such events are expected to be detected in the future ob-
serving run (e.g., Abbott et al. 2018) and with new detectors like LIGO-India (Saleem et al.
2022), Cosmic Explorer (CE; Evans et al. 2021), Deci-hertz Interferometer GW Observa-
tory (DECIGO; Kawamura, Seiji et al. 2021), Einstein Telescope (ET; Maggiore et al. 2020),
and Laser Interferometer Space Antenna (LISA; Barausse et al. 2020).

Since GWs couple very weakly with matter, there is no absorption and scattering
as they move in space. However, since GWs move along the geodesics, their path can
still be altered due to GL if they encounter a matter distribution along their path (e.g.,
Lawrence 1971; Ohanian 1974). For GW signals in the frequency band of current ground-
based detectors, f ∈ (10, 104) Hz, GL by galaxy or galaxy cluster scale lenses can lead
to the formation of multiple copies of the GW signal, known as the strong lensing (SL)
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regime of GL. These strongly lensed images can be (de-)magnified by different factors and
arrive with a certain time delay (td) between them, ranging from a few hours to several
months (e.g., Oguri 2018; More & More 2022). In such cases, ftd ≫ 1 and we can study
GL using the geometric optics (or ray-optics) approximation (e.g., Bernardeau 1999). The
extra (de-)magnification introduced by GL can introduce bias in the estimation of source
distance and binary component masses (e.g., Broadhurst et al. 2018; Oguri 2018; Smith
et al. 2017; Hannuksela et al. 2019; Broadhurst, Tom et al. 2020; Diego et al. 2021). In
addition, strong lensing also introduces a constant phase shift in the lensed GW signal
(e−inπ with n = 0, 1/2, 1 for type-I, type-II, type-III lensed images; Dai & Venumadhav
2017). Interestingly, this phase shift can be a useful aid in the search of type-II lensed
GWs (Dai et al. 2020; Ezquiaga et al. 2021; Vijaykumar et al. 2023). In the context of
GWs, strong lensing has been investigated in several works recently (e.g., Liao et al. 2017;
Takahashi 2017; Dai & Venumadhav 2017; Haris et al. 2018; Li et al. 2018; Smith et al. 2017;
Broadhurst et al. 2018, 2019; Broadhurst et al. 2020; Shan et al. 2021; Ezquiaga et al. 2021;
Cremonese et al. 2021, 2023; Çalışkan et al. 2023b; Shan et al. 2023a). Various searches
have also been carried out for signatures of strong lensing in the existing LVK data (e.g.,
Hannuksela et al. 2019; Smith et al. 2019; Dai et al. 2020; Liu et al. 2021; Abbott, R. and
others 2021; The LIGO Scientific Collaboration et al. 2023a; Janquart et al. 2023). However,
none of these searches has provided any indications of the existence of a strongly lensed
GW signal.

Since both GWs and EMwaves follow null geodesics, the GL theory for the two is the
same. However, some remarkable differences arise between the GL of GWs and GL of EM
waves because of primarily three reasons: (i) GWs are typically coherent and experience
minimal interaction (except gravitationally) with the interveningmatter, in contrast to the
EMwaves observed from astrophysical sources, which often undergo multiple absorption
and emission processes. (ii) GW strain measurements include amplitude and phase, pre-
serving phase information, while electromagnetic waves are typically characterized by
flux. (iii) ground-based detectors operate at ∼ 10 − 104 Hz, whereas observations in the
EM domain are conducted in a much higher frequency range∼ 106−1020 Hz; As a result,
wave effects can arise in the lensing of GWs due to intervening compact objects in the
mass range [1, 105] M⊙ owing to the formation of extra images (microimages) of the sig-
nal with time-delay values such that ftd ∼ 1 (e.g., Nakamura & Deguchi 1999; Takahashi
& Nakamura 2003). In such cases, these multiple lensed (temporally unresolved) images
interfere with each other, giving rise towave effects leading to frequency-dependent mod-
ulations in the observed signal (e.g., Deguchi & Watson 1986; Nakamura 1998; Baraldo
et al. 1999; Nakamura & Deguchi 1999; Jung & Shin 2019; Seo et al. 2022; Bulashenko &
Ubach 2022; Çalışkan et al. 2023c). In the context of the present thesis, wemay also refer to
these wave-optics effects as microlensing. When inferring source parameters, neglecting
these frequency-dependent modulations can lead to a biased inference, impacting more
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than just the inferred luminosity distance or chirp mass (e.g., Mishra et al. 2023b; Meena
& Bagla 2020; Diego et al. 2019; Kim & Liu 2023). Recently, this has been studied more
robustly in Mishra et al. (2023b) as a part of this thesis. Moreover, we also focus on galaxy
or galaxy cluster scale lenses, where instead of isolated microlenses, whole populations
(made of stars and stellar remnants like NS and BHs) of microlenses can reside. This can
lead to complex frequency-dependent microlensing effects in the already strongly lensed
GW signal. As shown in Diego et al. (2019) and Mishra et al. (2021), strong lensing mag-
nification is an important parameter in determining the strength of these microlensing
effects. However, we also note that the microlensing effects are expected to be negligible
in strongly lensed GW signals lensed by galaxy scale lenses with magnification below ten,
as shown in Meena et al. (2022).

Furthermore, in GW data analysis, especially for inferring the source properties cor-
rectly, it is crucial to employ an accurate waveformmodel that encapsulates all the physics
contained in the signal. By accuracy, we technically mean when systematic biases due to
waveform systematics are less than the statistical uncertainties. Otherwise, as mentioned
above, these systematic biases can lead to false conclusions and interpretations. For ex-
ample, the presence of atypical physical effects, such as eccentricity, overlapping signals,
etc., can lead to biases in tests of GR involving GWs (Hu & Veitch 2023; Bhat et al. 2023;
Saini et al. 2022; Narayan et al. 2023) when not accounted for. Similarly, we investigate
how ignoring microlensing can also affect tests of GR (Mishra et al., in prep). Further-
more, confidently detecting a microlensed signal presents its own set of challenges. We
will explore how other atypical effects, specifically eccentricity, have the potential to bias
microlensing searches if not properly accounted for. In addition to these considerations,
noise systematics resulting from non-Gaussianity and non-stationarity can further affect
parameter inference and model comparison results.

This thesis is organised as follows: In Chapter 2, we lay the foundation for GW im-
plications by explaining the fundamentals of GL. We also discuss the methodologies that
will be relevant in the subsequent chapters. Chapter 3 takes a closer look at the isolated
point lens model. We delve into its implications on the detection of GWs, its potential to
introduce biases in inferred parameters, and the exploration of population characteristics
within microlensed signals. We also assess the prospects for correctly identifying these
signals as microlensed. Chapter 4 extends the discussion to more intricate microlensing
scenarios, such as a microlens or a population of them embedded in a strong lens (macro-
lens). In Chapter 5, we venture further into the impact of ignoring microlensing effects
on tests of GR. Lastly, in Chapter 6, we examine the challenges of model comparison by
illustrating how the presence of atypical physical effects, like eccentricity, can introduce
biases in microlensing searches.
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Chapter 2

Methodology

2.1 Basic Theory of Gravitational Lensing

In this section, we briefly discuss the basics of GL in geometric (Bernardeau 1999) lim-
its (Takahashi & Nakamura 2003). In the geometric optics limit, the lensing of a source
at an angular diameter distance Ds due to the presence of an intervening lens/deflector
at an angular diameter distance Dd can be described by the so-called gravitational lens
equation (assuming small-angle and thin-lens approximation),

yyy = xxx−ααα(xxx) = xxx−∇xxxψ(xxx), (2.1)

where yyy = ηηηDd/(ξ0Ds) ≡ βββ/θ0 and xxx = ξξξ/ξ0 ≡ θθθ/θ0 represent the projected unlensed
source position and the lensed image position on the lens/image plane (measured with
respect to the optical axis), respectively (see Fig. 2.1 for visual illustration). Here ηηη = βββDs
and ξξξ = θθθDd represent physical distances on the source and image planes, respectively,
while βββ and θθθ are their corresponding angular positions on the sky. In order to make
the lens equation dimensionless, we have chosen an arbitrary length scale ξ0 (or angular
scale θ0) such that ξ0 ≡ θ0Dd. The lens equation simply describes vector addition and is
derived purely from geometry where physics is contained in the deflection termααα (xxx), i.e.,
in the projected 2D lensing potential ψ (xxx), which determines the deflection as a function
of the impact parameter xxx on the lens plane. The nonlinearity brought by the deflection
term is what leads to the formation of multiple images of a given source. In the context of
GWs, this would lead to multiple detections of the same source, which may be separated
in the time domain by order of a few minutes to several years (e.g., see Fig. 13 in Oguri
2018). The magnification factor corresponding to these different lensed macroimages (or,
equivalently, events) are given as

µ ≡ | detA|−1 =
[
(1− κ)2 − γ2

]−1
, (2.2)
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Figure 2.1: Illustration of the lensing configuration in the thin lens approximation. The
lensing configuration is described by the source displacement from the line-of-sight ηηη, the
angular diameter distance from the observer to the sourceDs, to the lensDd and from lens
to the source Dds and by the relative position of the image in the image plane ξξξ. [Credit:
Adapted from Pagano et al. (2020)]

where Aij ≡ [∂yi/∂xj] is the Jacobian (matrix) corresponding to the lens equation Eq. 2.1
while κ and γ represent the convergence and shear at the image position, respectively.
Both κ and γ are functions of the lens plane coordinate xxx ≡ (x1, x2).

For a given lensed signal, the corresponding time delay with respect to its unlensed
counterpart is given by (see Appendix A.2 for a detailed derivation; Eq. A.50):

td (xxx,yyy) = Ts

[
1

2
|xxx− yyy|2 − ψ (xxx) + ϕm (y)

]
≡ Tsτd(xxx,yyy) , (2.3)

where ϕm (y) is a constant independent of lens properties and the factor Ts is the charac-
teristic time delay defined via

Ts

(1 + zd)
= ξ20

Ds

cDdDds
≡ 2Rs0

c
=

4GM0

c3
. (2.4)
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Above, zd is the lens redshift, c is the speed of light, Dds is the angular diameter distance
between the source and the lens, and Rs0 is the Schwarzschild radius corresponding to
the massM0. This mass has an Einstein radius ξ0 if placed on the lens plane. The factor
Ts roughly sets the order of the time delay for a given lens system.

2.2 Wave-Optics Effects in Gravitational Lensing

In this section, we provide a brief overview of wave-optics effects in gravitational lensing
of GWs. For a more detailed discussion and derivations, readers are encouraged to refer
to Appendix A. The formalism of geometrical/ray optics described above is valid as long
as the time delay between any two images is sufficiently large compared to the wave-
length λ of the signal, i.e., ftd ≫ 1, where f is the frequency of the signal. This relation
holds in a typical scenario of strong gravitational lensing where different macroimages
are formed. GL of GWs due to galaxies or galaxy cluster scale lenses can also be described
using the above formalism. However, if the time delay of a lensed signal is of the order of
its time period, i.e., when ftd ∼ 1 (or, equivalently, Rs0 ∼ λ), then wave effects are non-
negligible, and one has to take diffraction into account. Furthermore, when the source
and the deflector are far from the observer, one can use the Huygens-Fresnel principle to
analyze the lensing of the incoming plane-wave flux, in which case, every point on the
lens plane acts as a secondary source (Huygens point sources), and the amplitude of the
signal at each point on the observer plane is the superposition of the signals from these
various sources, leading to interference patterns.

For an isolated point mass lens of massML, the above condition (ftd ≲ 1) translates
to, roughly,ML ≲ 105M⊙(f/Hz)−1. Therefore, for GWswith frequency in the LIGO band
(10−104 Hz), themass rangewherewave effects become significant is∼ 10−104 M⊙. This
mass range is predominantly responsible for microlensing in the strongly lensed images
of a source. In comparison, for electromagnetic (EM) signals with f ∼ 106 − 1020 Hz, the
diffraction effects become significant for the mass range ∼ 10−15 − 10−1M⊙. This is a
major difference between the microlensing of EM waves and that of GWs.

In the case of microlensing, one has to consider the corrections arising from wave
optics (e.g., Nakamura & Deguchi 1999; Takahashi & Nakamura 2003). If we denote the
ratio of the observed lensed and the unlensed GW amplitudes asF (f,yyy), then the amplifi-
cation of the lensed signal is given by the diffraction integral (Bernardeau 1999; Goodman
2005) (also see Appendix A.1 for a detailed derivation; Eq. A.33):

F (ν, yyy) =
ν

i

∫
d2xxx exp [2πiντd (xxx,yyy)] , (2.5)
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where

τd(xxx,yyy) =
td(xxx,yyy)

Ts
, ν ≡ ξ20Ds

DdDds

f

c
(1 + zd) = Tsf. (2.6)

The definition of dimensionless frequency, ν, and dimensionless time, τd, is such that
ντd = ftd. Since F (f) is a complex-valued function, the total amplification, |F |, and
phase shift, θF , can be obtained through the relation F (f) = |F |eiθF . Note that the
phase of the lensing amplification factor is determined by the factor ftd, which sets the
threshold for the significance of wave-optics effects. When ftd ∼ 1, wave-optics effects
become dominant, resulting in frequency-dependent modulations in F (ω). Conversely,
in the geometric optics limit where ftd ≫ 1, the phase becomes highly oscillatory, and
only the stationary points of td contribute to the integral in Eq. 2.5. In that case, wave
optics reduces to ray optics and, as a result, the diffraction integral reduces to

F (f)
∣∣
geo =

∑
j

√
|µj| exp (i2πftd,j − iπnj) , (2.7)

where µj and td,j are, respectively, the magnification factor and the time delay for the j-th
image. Also, nj is the Morse index, with values 0, 1/2, and 1 for stationary points corre-
sponding to minima, saddle points and maxima of the time-delay surface, respectively.
As one can see from the above equation, even in the geometric optics limit, gravitational
lensing introduces an extra phase, the so-called Morse phase, of e−iπ/2 and e−iπ in the
saddle points and maxima with respect to the minima, respectively (Dai & Venumadhav
2017, Ezquiaga et al. 2021). This phase difference can be used to search for the strongly
lensed and multiply imaged GW signals, and to constrain viable lenses (Dai et al. 2020).

2.2.1 Microlensing due to an isolated point-lens

The diffraction integral, Eq. 2.5, can be solved analytically only for some trivial lens mod-
els, such as an isolated point-mass lens model (Takahashi & Nakamura 2003). By isolated,
we mean the lensing effects are solely due to the point mass in the absence of any appre-
ciable external shear. It has been shown that this model is valid as long as the physical
radius of the lens is significantly smaller than the Einstein radius of the lens. In this
thesis, the typical Einstein radius of stellar-mass microlenses is O(10−1) pc, which is sig-
nificantly greater. In the case of an isolated point lens, the lensing potential takes the
form ψ (xxx) = ln |xxx| (see Sect. A.2.3) and the lensing amplification factor integral in Eq. 2.5

8



CHAPTER 2. METHODOLOGY

can be solved analytically, resulting in (Takahashi & Nakamura 2003):

F (ω, y) = exp
{
πω

4
+
iω

2

[
ln
(ω
2

)
− 2ϕm (y)

]}
× Γ

(
1− iω

2

)
1F1

(
iω

2
, 1;

iωy2

2

)
,

(2.8)

where ω represents the dimensionless frequency that depends solely on the redshifted
lens mass, MLz, for a given dimensionful frequency f , expressed as ω = 8πGMLzf/c

3,
and ϕm(y) is a frequency-independent quantity depending only on y, given by ϕm(y) =

(xm − y)2/2 − ln(xm), where xm =
(
y +

√
y2 + 4

)
/2. 1F1 denotes the confluent hy-

pergeometric function, and Γ denotes the gamma function. The scale factor, ξ0, has been
chosen as equivalent to the Einstein radius of the point mass lens. Therefore, the amplifi-
cation factor due to an intervening isolated point mass lens can be expressed in terms of
only two parameters: the redshifted lens mass (MLz) and the impact parameter (y).

In the case of the isolated point-mass lens model, the lens equation Eq. 2.1 can also
be solved analytically, and the time delay between the two (micro) images is determined
only byMLz and y, given by (Schneider & Weiss 1986; Bernardeau 1999):

td(MLz, y) = 4MLz

[
y +

√
y2 + 4

2
+ ln

(√
y2 + 4 + y√
y2 + 4− y

)]
. (2.9)

By examining how the GW frequency, fGW, compares to the time delay caused by the
gravitational lens, td, we can categorizeMLz−y space into three distinct regimes (Mishra
et al. 2023b; Bondarescu et al. 2023):

i. Long-wavelength regime: In this regime, fGW · td ≪ 1 (or wavelength of GW λGW
is much greater than the Schwarzschild radius of the lens RSch), leading to only a
minimal interaction between the signal and the lens. The amplification factor in
this regime can be approximated as (Tambalo et al. 2023):

F (ω, y) ≃ 1 +
ω

2
[π − i(2 log(y)− Ei(iωy2/2)] +O(ω2), (2.10)

where Ei(z) is the exponential integral. Note that, in the leading order, F (ω, y) ∝
1+ω. Thus, for ω ≪ 1, there is no effect of lensing on signals asF (ω, y) = 1. How-
ever, as fGW · td approaches unity while still being much less than it, the presence
of non-zero ω can lead to a frequency-dependent amplification of the signal. That is
why some authors also term this region as the `amplification' regime (Bondarescu
et al. 2023).

ii. Wave-dominated zone: In this zone, fGW · td ∼ 1 (where interference effects will be
dominating). This leads to a frequency-dependent modulation of the signal, which,
in the case of a point-lens, is governed by Eq. 2.8.
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Figure 2.2: Contour plot of the characteristic frequency, fML, indicating the onset of
significant microlensing effects for varying point lens parameters MLz and y within the
LIGO−Virgo sensitivity band (10-103 Hz). Contours at 10 and 103 Hz denote the rough
transition regions, dividing the parameter space into three zones: (i) Long-wavelength
regime (left-panel), where GW frequency fGW is significantly lesser than fML, i.e., fGW ≪
fML, resulting in minimal interaction; (ii) Wave dominated zone (middle-panel): region
where fGW ∼ fML, leading to significant interference effects on GWs. (iii) Geometrical-
optics regime (right panel): region where fGW ≫ fML. This region is inclusive of milli-
lensing and strong-lensing scenarios.

iii. Geometrical Optics regime: If fGW · td ≫ 1, Eq. 2.7 in the case of an isolated point
lens reduces to (Takahashi & Nakamura 2003)

F (f) = |µ+|1/2 − i|µ−|1/2ei2πftd , (2.11)

where the magnification of each image is |µ±| = 1/2± (y2 + 2)/(2y
√
y2 + 4) and

the time delay between the two microimages is given by Eq. 2.9. Physically, Eq. 2.11
implies that in the high-frequency limit, the modifications due to a point lens can be
considered as a trivial superposition of two signals which differ only by a constant
amplitude, a phase shift of π/2, and a time-delay value smaller than the chirp time
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Figure 2.3: Illustration of the nature of microlensing modulations in the three regimes.
The absolute part of the amplification factor, |F (f)|, is plotted against frequency (black
lines). Microlens parameters are fixed at y = 0.3 and MLz/M⊙ ∈ {10, 103, 105}, ar-
ranged from left to right. The blue-shaded region represents the sensitivity band of cur-
rent ground-based detectors, approximately 10 − 100 Hz, for reference. The red vertical
line indicates the characteristic frequency for the onset of significant microlensing effects,
fML. The panels are divided based onwhether fML > 1000Hz (left panel, long-wavelength
regime), fML ∈ (10 − 1000) Hz (middle panel, wave-dominated zone), or fML < 10 Hz
(right panel, geometrical optics regime).

of the signal1.

One can explicitly find the characteristic frequency fML where the wave effects dom-
inate for a givenMLz and y, given by

fML(MLz, y) ≡
1

td(MLz, y)
. (2.12)

Considering that current ground-based detectors are primarily sensitive in the band ∼
(10 − 1000) Hz, we can illustrate the above regions in the MLz − y parameter space
as shown in Fig. 2.2 (reproduced from (Mishra et al. 2023b)). Here, we roughly demar-
cate MLz − y space based on whether fML > 1000 Hz (long-wavelength regime), fML ∈
(10, 1000) Hz (wave dominated zone), or fML < 10 Hz (geometrical optics regime).
Throughout this thesis, whenever we employ an isolated point lens model in our study,
we will primarily focus on the parameter space range depicted in the figure: MLz/M⊙ ∈
(10, 105) and y ∈ (0.01, 3), unless otherwise stated.

In Fig. 2.3, we illustrate the nature of microlensing modulations in the three regimes.
The absolute part of the amplification factor, |F (f)|, is plotted against frequency (black
lines), where themicrolens parameters are fixed at y = 0.3 andMLz/M⊙ ∈ {10, 103, 105},

1We exclude strong-lensing cases where images are completely separated, requiring the time-delay value
to be smaller than the chirp time of the signal.
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arranged from left to right. The blue-shaded region represents the sensitivity band of cur-
rent ground-based detectors,∼ 10−100Hz, for reference. In the long-wavelength regime
(left panel), we observe solely frequency-dependent amplification, as discussed in relation
to Eq. 2.10. Moving to the middle panel, we notice that fML indeed marks the point where
interference effects begin to dominate. This point typically occurs shortly after the first
crest and trough of the amplification factor. It is worth pointing out that the characteris-
tic location of fML (lying between the first two peaks) remains consistent across different
lensing parameters. In contrast, the right panel illustrates highly oscillatory modulations
that eventually lead to an averaging effect (geometrical optics limit). This behavior even-
tually results in frequency-independent effects.

2.3 Gravitational Wave Data Analysis

In this thesis, we usually restrict ourselves to GW signals arriving from quasi-circular
BBHs and modelled in accordance with GR. The corresponding GW WFs are 15 dimen-
sional, modelled by a set of parametersλλλ ≡ {λλλint,λλλext}, with 8 intrinsic parameters (λλλint)
that depend only on the properties of the two BHs, and 7 extrinsic parameters (λλλext) that
are related to how the source is located and oriented relative to the GW detector (e.g.,
Husa 2009). The 8 intrinsic parameters comprise the two masses, m1 and m2, and the 6
spin components of the two spin angular momenta, s⃗1 and s⃗2 of the heavier and lighter
binary components, respectively. The spin parameters are usually defined in the frame
aligned with the total angular momentum J⃗ , as it remains approximately constant for
simple precession cases (Fairhurst et al. 2020). These are - (dimensionless) spin magni-
tudes, |s⃗1| = a1 and |s⃗2| = a2, the tilt angles between the spin vectors and the orbital

angular momentum vector (L⃗), θ1 = arccos
(
L̂ · ŝ1

)
and θ2 = arccos

(
L̂ · ŝ2

)
(where

ŝi ≡ s⃗i/|s⃗i|), the difference between the azimuthal angles of the individual spin vector
projections onto the orbital plane, ϕ12, and the azimuthal angle of L⃗ on its cone about J⃗ ,
ϕJL). The fact that λλλint is only 8 dimensional in this case is a consequence of the no-hair
theorem, while ignoring electric charge. The rest 7 extrinsic parameters are: 4 spacetime
coordinates for the coalescence event (arrival time of the signal as it enters the sensitivity
band of the detectors, tc, luminosity distance to the source, dL, and two coordinates for
specifying its sky location, i.e., right ascension, α, and declination, δ), and 3 Euler an-
gles for the binary’s orientation relative to the Earth (inclination, ι, polarisation, ψ, and
coalescence phase, ϕ).

A frequency domain GW WF, h̃(f), for a chirping BBH system can be written in the
form:

h̃(f) = A(f ;M, Deff)e
−iΨ(f ;M,η,s⃗1,s⃗2)+ϕo , (2.13)
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Here, M and η represent the chirp mass and the symmetric mass ratio, while s⃗1,2 denote
the binary constituent spin vectors, ϕo is a constant phase shift depending upon the co-
alescence phase ϕ and other extrinsic parameters, while Deff is the effective luminosity
distance of the source which is related to the true luminosity distance, dL, as (Allen et al.
2012):

Deff = dL

[
F 2
+

(
1 + cos2 ι

2

)2

+ F 2
x cos2 ι

]−1/2

(2.14)

where ι is the inclination angle defined in the orbital angular momentum frame between
the direction to the observer and the orbital angular momentum axis of the binary system;
F+/x ≡ F+/x(α, δ, ψ, tc) are the antenna pattern response functions that relate the source
orientation to the detector orientation, described by the right ascension and declination
of the source, (α, δ), the trigger time at the detector, tc, and on the polarisation angle ψ.
The induced strain on the detector is then related to the pure polarised components as

h = F+(α, δ, ψ)h+ + Fx(α, δ, ψ)hx (2.15)

Therefore, from Eq. 2.13, the inference of GW phasing is extremely important to study
the intrinsic source properties, like their masses and spins, while the extrinsic parameters
mainly affect the amplitude of the signal and result in an effective luminosity distance. As
already pointed out earlier, since microlensing induces modulations in both the amplitude
and phase, Eq. 2.16, it is expected it will affect most of the GW parameters.

2.3.1 Microlensed Waveforms

The lensed GW signal hL(t) can be obtained from the unlensed signal hU(t) by using the
net lensing amplification factor F (f ;λλλL) caused by the intervening lens system(s), given
as:

h̃L(f ; {λλλU,λλλL}) = F (f ;λλλL) · h̃U(f ;λλλU), (2.16)

where h̃L and h̃U are the Fourier transforms of the timeseries hL and hU, respectively.
Here, λλλL denotes the lens-related parameters contributing to the amplification factor,
while λλλU represents the parameters of the unlensed GW signal. For an isolated point-
mass lens, λλλL ∈ {MLz, y} and the amplification factor F (f ;λλλL) is given by Eq. 2.8.

Since F (f ;λλλL)maps frequencies to complex numbers, it causes modulations in both
the amplitude and the phase of the signal, thereby affecting the morphology of the WF.
As intrinsic parameters are mainly determined from GW phasing, it is highly likely that
the intrinsic parameters of a detected microlensed signal will be biased. Similarly, the
modulations in the amplitude are likely to affect the extrinsic parameters. Consequently,
any analysis disregarding microlensing effects may yield erroneous results. This aspect
will be the focus of our investigation in subsequent chapters of this thesis.

13



CHAPTER 2. METHODOLOGY

2.3.2 Matched-filtering Techniques

The strain amplitude of GW signals is often much smaller than the random noise present
in the detectors. However, with the knowledge of physical models describing the dy-
namics of compact binary mergers and their associated GW WFs, one can employ an
optimal filter to devise a very sensitive search methodology to detect such signals, called
the matched-filtering technique (Sathyaprakash & Dhurandhar 1991). This involves com-
puting correlations between the detector data and millions of WF templates, covering the
parameter space of possible masses and spins of the binary components, and identifying
instances of signal-to-noise ratio (SNR, or ρ) above a certain threshold2 (e.g., Usman et al.
2016; Allen et al. 2012).

For detector time-series data d(t) = h(t) + n(t), where h(t) is a GW signal and n(t)
is the detector noise, the matched-filter SNR of a WF template hT(t,λλλ) with d(t) is given
by

ρ = max
{ϕ,t}

〈
d
∣∣∣ĥT

〉
≡ max

{ϕ,t}

⟨d|hT⟩√
⟨hT|hT⟩

, (2.17)

where the maximisation is done over phase ϕ and time t , and ⟨.|.⟩ is the noise-weighted
inner product, called overlap, defined as (Usman et al. 2016)3

⟨h1|h2⟩ ≡ 4 Re
[∫ fhigh

flow

df h̃
∗
1(f)h̃2(f)

Sn(f)

]
, (2.18)

where h̃(f) = F{h(t)}(f) =
∫
dt h(t)ei2πft and Sn(f) is the single-sided PSD of the

detector noise. Note that since extrinsic parameters primarily affect the signal by intro-
ducing a constant phase shift and amplitude, they need not be incorporated explicitly;
they are implicitly accounted for during the phase maximization process4. In this thesis,
we mostly use the target PSDs for the fourth observing run (O4) of the advanced LIGO
and Virgo detectors (Abbott et al. 2018)5.

2Current (network) SNR threshold used in the search of GW signals in the LIGO−Virgo collaboration
is 8.

3In writing this, we assume that noise is stationary, i.e., ñ(f)∗ñ(f ′) = (1/2)Sn(|f |)δ(f − f ′).

4However, this is not always true. For example, in the presence of higher-order modes, the effect of
coalescence phase cannot be absorbed into a constant phase shift.

5For LIGO detectors, we used the PSD given in https://dcc.ligo.org/public/0165/T2000012/

002/aligo_O4high.txt. For Virgo, we used the PSD available at https://dcc.ligo.org/public/
0165/T2000012/002/avirgo_O4high_NEW.txt.
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Without loss of generality, one can also assume the expected value of noise is zero,
i.e., n(t) = 0, in which case the expected value of the SNR of a signal h(t) using a template
hT(t) is given by

ρ = max
{ϕ,t}

〈
h
∣∣∣ĥT

〉
= ∥h∥M(ĥ, ĥT) = ∥h∥ cos θ, (2.19)

where we denote the norm as ∥h∥ ≡
√
⟨h|h⟩, and θ is the angle between h and hT in the

Hilbert space of GW signals; the term

M(ĥ, ĥT) ≡ max
{ϕ,t}

〈
ĥ
∣∣∣ĥT

〉
(2.20)

is referred to as match6, defined as the overlap maximised over time and phase. In the
context of GW searches, the functionM(λTλTλT ) ≡

〈
ĥ
∣∣∣ĥT(λTλTλT )

〉
is called the ambiguity func-

tion, where the vector λTλTλT ⊆ λλλ represents parameters of the template vector and λTλTλT ∈ T ,
where T is the discrete set of parameter grid employed for searching (e.g., Creighton &
Anderson 2011; Droz 1999). From Eq. 2.19, one can see that the optimal value of SNR,
ρopt, is simply ∥h∥. However, in realistic scenarios, the expected value of the observed
matched-filter SNR will be some fraction of the optimal SNR. This fraction is called the
(effective) fitting factor (Ajith et al. 2014; Canton & Harry 2017),

FF = max
λTλTλT ,t,ϕ

M(λTλTλT ) =
ρ

ρopt
, (2.21)

which is the maximum match obtained among all the templates. The FF value then cor-
responds to the match with the nearest template to the actual signal (one that subtends
the minimum angle to it). The reason why FF < 1 is primarily three folds - (i) parameter
grid of the templates are discretely spaced. (ii) limited dimensionality of the templateWFs:
implying the template signals usually live on a sub-manifold of the actual signal. Hence,
the signal can only have a fraction of the projection along that subspace. (iii) incomplete
model of the template WFs (or some missing physics): in addition to the previous point,
if the true WF contains some physics not incorporated in our template WFs, such as mi-
crolensing, eccentricity, non-GR effects, etc., the non-inclusion of these physical effects
in the template WFs can further decrease the FF value.

A FF value of x ensures that the maximum fractional loss of possible astrophysical
signals is not more than a factor of (1 − x3), assuming the rate of mergers R ∝ d3L and
that ρ ∝ d−1

L ). The template banks typically used for searching GW signals from compact
binary coalescences (CBCs) have a minimum FF threshold of around 97% for WFs within
the parameter space, which implies no more than∼ 10% of possible astrophysical signals
are lost due to the discrete nature of the bank.

6Unless otherwise noted, the overlap is always maximised over time t, phase ϕ. A natural measure of
deviation between any two WFs can also be defined using mismatch, MM ≡ 1−M.
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2.3.3 Simulated Injections

To study the effect of microlensing on the inference of GW signals, we consider simu-
lated BBH events, called injections (or simulated observations). These injections are done
in the detector network of LIGO-Virgo with the projected O4 sensitivity7 (Abbott et al.
2018). To avoid noise systematics, i.e., biases due to specific noise realizations, we usually
do not include noise in our injections unless otherwise noted (assuming the realisation
of Gaussian noise that yields zero noise in the data containing the signal). Put simply,
the posteriors obtained in our zero-noise scenario can be viewed as the expected values
derived from numerous posteriors resulting from injections in zero-mean Gaussian noise,
providing a robust approach for analysing microlensing effects.

To generate injections, whether unlensed or microlensed, we utilize the publicly
available package developed by the author, named GWMAT:Gravitational Waves Mi-

crolensing Analysis Tools8 (Mishra, A., in prep.).

2.3.4 Bayesian Inference

Here, we give a brief overview of the Bayesian inference in GW astronomy. For a more
comprehensive discussion, the reader is referred to (Thrane & Talbot 2019; Christensen &
Meyer 2022) .

Parameter Estimation

In GW astronomy, it is crucial to infer the parameters of a GW signal with precision. We
usually adopt Bayesian approach to statistically infer the GW parameters λλλ, where the
primary aim is to construct a posterior distribution

p(λλλ|d), (2.22)

which is the probability density function for the continuous variable λλλ given the data d.
Since it is a probability density, it satisfies the condition∫

V
p(λλλ′|d)dλλλ′ = 1, (2.23)

7For LIGO detectors, we used the PSD given in https://dcc.ligo.org/public/0165/T2000012/

002/aligo_O4high.txt. While for Virgo, we used the PSD available at https://dcc.ligo.org/

public/0165/T2000012/002/avirgo_O4high_NEW.txt.

8https://git.ligo.org/anuj.mishra/gwmat
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where V denotes the volume of the parameter space under consideration, and p(λλλ′|d)dλλλ′
denotes the probability that the true value of λλλ is between (λλλ′,λλλ′ + dλλλ′). Using Bayes
theorem, the posterior distribution can be simply written as:

p(λλλ|d) = L(d|λλλ)π(λλλ)
Z

=
L(d|λλλ)π(λλλ)∫

V dλλλ
′L(d|λλλ′)π(λλλ′)

∝ L(d|λλλ)π(λλλ). (2.24)

Here, L(d|λλλ) is the likelihood function of the data given the parameters λλλ, π(λλλ) is the
prior distribution forλλλ (our prior belief), and the denominatorZ is a normalization factor
called the evidence, or marginal likelihood. Note that we use L to denote the likelihood
instead of using p, because it is not a probability density, i.e.,

∫
dλλλ′L(d|λλλ′) ̸= 1. The

likelihood function is something that we choose, and is a description of the measurement.
By writing down a likelihood, we implicitly assume a noise model. For GW astronomy, we
typically assume a Gaussian-noise model, where the likelihood function takes the form:

L(d|λλλ) = 1

2πσ2
exp
(
−1

2

∥d− µ(λλλ)∥2

σ2

)
. (2.25)

Here, µ(λλλ) denotes the template GW WF given parameters λλλ, σ is the detector noise, and
∥d− µ(λλλ)∥2 = ⟨d− µ(λλλ)|d− µ(λλλ)⟩. Note that π with no parentheses and no subscript
is the mathematical constant, not a prior distribution. Throughout this work, the prior
functions π(λλλ) utilized are standard functions used by the LVK collaboration in analysing
real events. Specifically, for estimating chirp mass and mass-ratio, we adopt a prior that
is uniform in component masses. Additionally, angles associated with component spin
vectors and all Euler angles are assumed to be uniformly distributed in space, indicating
random orientation without preference. The magnitude of the component spin vectors
is also assumed to have a uniform prior. Furthermore, the distance prior is uniform in
comoving volume.

In this thesis, we conduct parameter estimation (PE) employing the nested sampling
algorithm (Skilling 2006), which directly computes evidence and is therefore crucial for
model comparison studies. Specifically, we utilize the Dynesty sampler (Speagle 2020) as
implemented in the Bilby package (Ashton et al. 2019, 2020) to obtain p(λλλ|d) and Z for
our injections.

Model Comparison

In this section, we discuss howwe can compare different models in analysing a given data
d. To compare any two models, say HA and HB, we can use Bayes' theorem to calculate
the odds ratio, defined as (Deutsch 1999):

OB
A ≡ p(HB| d)

p(HA| d)
=
p(d| HB)

p(d| HA)
· p(HB)

p(HA)
. (2.26)
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The higher the value ofOB
A, the stronger is the support in favour of modelHB over model

HA. Under the assumption that all models are equally likely a priori 9, we set p(HA) =

p(HB) in Eq. 2.26. The odds ratio then reduces to the Bayes factor, which is simply the
ratio of the evidences (Z) of the two models:

OB
A = BB

A ≡ p(d|HB)

p(d|HA)

=

∫
VλHB

dλλλHB L(d| λλλHB) p(λλλHB | HB)∫
VλHA

dλλλHA L(d| λλλHA) p(λλλHA | HA)
≡ ZHB

ZHA

,

(2.27)

where λλλHA and λλλHB are the model parameters ofHA andHB hypotheses, and VλλλH repre-
sents the parameter space volume. It is rather convenient to work with the logarithm of
the Bayes factors, which can be expressed as:

log10 BB
A = log10 ZHB − log10 ZHA . (2.28)

When log10 BB
A is large (log10 BB

A > 1), we say HB is strongly preferred over HA. When
the value is negative or only slightly positive (logBB

A ≲ 0.5), HB is discarded in favour of
theHA.10 It is important to note that Bayes Factor inherently embodies Occam’s principle
of parsimony, which favours less complicated models, i.e., models with fewer parameters
are more preferred among similarly performing models. In other words, while a more
complicated model will give a better fit and higher likelihood values, the evidence of the
model is reduced by the smaller prior mass within the support of the likelihood.

For the search of microlensed signals due to a point-mass lens11, we shall invoke at
least three hypotheses: (i) Hnoise: the data contains only noise, (ii) HUL: the data con-
tains an unlensed signal (modelled by the parameters λλλHUL) in addition to noise, and (iii)
HML: data contains a microlensed signal (modelled by the parameters λλλHML) in addition
to noise. λλλHML is described using two additional (microlensing) parameters, MLz and y,
to the unlensed hypothesis, i.e., λλλHML ≡ {λλλHUL , MLz, y}. Thus, in case of BBH signals,
λλλHUL ∈ R15 and λλλHML ∈ R17. Using Eq. 2.28, we can compare microlensed vs unlensed

9In case of model comparison studies between microlensed and unlensed hypotheses, this assumption
makes sense only for the initial set of searches. However, based on such results, an informed prior onmodels
can be used, which should incorporate our belief that the number of microlensed signals is much smaller
than the unlensed signals.

10This interpretation is based on Jeffrey's scale (Deutsch 1999).

11Since analytical solutions for the lensing amplification factor are currently only available for simple sys-
tems, such as an isolated point-mass lens, microlensing searches typically rely on this model when searching
for microlensed signals
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hypothesis as follows:

log10 BML
UL = log10 ZHML − log10 ZHUL = log10 BML

noise − log10 BUL
noise, (2.29)

One can obtain the values for logBUL
noise and logBML

noise by running a nested sampler with
hypotheses HML and HUL, respectively, using Bilby. The second equality in the above
equation stems from the fact that the evidence computation for the ``noise model", Znoise,
does not depend upon the WF models being compared but only on the data segment and
the assumed estimate of the noise PSD profile of the detectors. Therefore, Znoise will
result in equivalent values for both HML and HUL models given the same settings for the
likelihood evaluation and other sampler settings.

In the high-SNR limit, when most of the posterior volume is confined around a par-
ticular value12, i.e., when the posterior density is highly peaked around the posterior
mode, the evidence can be approximated using the Laplace approximation and the re-
sulting Bayes factor can be written as (Cornish et al. 2011; Vallisneri, Michele 2012):

lnBB
A ≈ 1

2
(ρ2HB

− ρ2HA
) + ln OHB

HA
(2.30)

where ρH denotes the recovered SNR under the hypothesis H, O represents the Occam's
factor defined as the ratio of the posterior volume ∆V to the prior volume V , i.e, O ≡
∆V /V ∝

√
|F−1|, where F is the Fisher information matrix. If HB is the true model

which we recover assumingHA, we will be able to recover only a fraction of the true SNR
ρHB . Using Eq. 2.21, we can write:

ρHA = FF ρHB . (2.31)

Substituting the above equation into Eq. 2.30, we get

lnBB
A ≈ 1

2
(1− FF 2)ρ2HB

+ ln OHB
HA
. (2.32)

If one further ignores the Occam's factor term, we obtain a computationally efficient
method for estimating Bayes Factors using only the FF values:

lnBB
A ≈ 1

2
(1− FF 2)ρ2HB

. (2.33)

This expression proves particularly useful when analysing a population of signals, where
conducting parameter estimation would be prohibitively computationally expensive.

12which coincides with the true value when the recovery model is the true model describing the signal.
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To run parameter estimation with modelHML assuming isolated-point mass lens for
microlensing, we employ a custom frequency domain source model13, available through
the Python/Cython package GWMAT (Mishra, A., in prep.)., which incorporates the two
microlensing parametersMLz and y in addition to the standard 15 BBH parameters. The
source model provides an efficient computation of the lensing amplification factor for an
isolated-point mass lens, utilizing both Eq. 2.8 and Eq. 2.11. Since the evaluation of hyper-
geometric function in Eq. 2.8 can be time-consuming, we precompute this part and read
the data while doing PE. Meanwhile, the geometric optics part is computed using Cython,
giving the power of C. On average, a microlensed parameter estimation run takes about
40% extra time than an unlensed parameter estimation run. While inferring microlens
parameters, we assume a log-uniform prior in MLz and a linear power-law prior for y,
i.e., p(y) ∝ y. This linear relationship comes from geometry and isotropy (Lai et al.
2018). To wit, the probability of a source having an impact parameter y relative to a mi-
crolens will be proportional to the area of a ring of infinitesimal width having radius y,
i.e., p(y)dy = 2πydy.

2.3.5 Fisher Information formalism

In this section, we briefly discuss the application of Fisher Information Matrix formalism,
often referred to as Fisher analysis, to quantify the statistical uncertainties associated with
parameter measurements due to correlations with other parameters (Finn 1992; Vallisneri
2008; Borhanian 2021; Antonelli et al. 2021; Mukherjee et al. 2022).

Under the assumption that noise, n(t) = d(t) − h(t), is stationary and Gaussian
with zero mean, the (log) likelihood of observing a specific data stream realisation can be
written as (see Eq. 2.25):

logL(D|λλλ) ∝ −1

2
⟨(D −H(λλλ)|D −H(λλλ)⟩, (2.34)

where D and H are Fourier transforms of d and h, respectively, and λλλ is the parameter
vector that determines a particular WF. Next, the formalism exploits the fact that for a
sufficiently high SNR, the deviation in strain can be approximated as a linear function
of parameter errors around the true value at the leading order, called linear signal ap-
proximation (LSA) (Finn 1992). Since the best-fit parameter λλλbest−fit can be assumed to
be a perturbation from the true parameter λλλtrue in the presence of noise, one can write
λλλbest−fit = λλλtrue + ∆λλλ. Thus, using LSA, the WF model in the vicinity of the best-fit

13https://git.ligo.org/anuj.mishra/gwmat/-/blob/main/gwmat/bilby_custom_FD_

source_models/microlensing_source.py
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parameters can be written as

h(t;λλλbest−fit) ≈ h(t;λλλtrue) + ∂ih(t;λλλtrue)∆λ
i, (2.35)

where we make use of the Einstein-summation convention and ∂i ≡ ∂/∂λi. The expres-
sion is valid for |∆λi| ≪ 1. Substituting Eq. 2.35 into Eq. 2.34, one obtains

−2 log p(D|λλλ) = (∆λi −∆λinoise)Γij(∆λ
j −∆λjnoise), (2.36)

∆λinoise = (Γ−1)ij ⟨∂jh|n⟩ (2.37)

where Γij is the Fisher matrix defined by

Γij = ⟨∂ih|∂jh⟩ . (2.38)

Defining the statistic ∆̂λi = ∆λinoise, one finds

E[∆̂λi] = 0, Cov(∆̂λi, ∆̂λi) ≡ Σ = (Γ−1)ij +O(ρ−1). (2.39)

The diagonal and off-diagonal elements of the covariance matrix Σ denote the variances
and covariances of the parameters, respectively, due to the uncertainty introduced by the
detector noise and give 1σ-uncertainty estimates via σλi =

√
Σii.

Note that the validity of Fisher analysis demands a high-SNRwhere LSA is valid. Fur-
thermore, the Fisher matrix needs to be 'well-conditioned' for invertibility, which could
even be compromised due to the limited arithmetic precision. See, e.g., the excellent dis-
cussion in Ref. Vallisneri (2008) of these issues related to Fisher analysis.
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Chapter 3

Exploring the Impact of Microlensing on
Gravitational Wave Signals: Biases,
Population Characteristics, and
Prospects for Detection

In this chapter, we investigate the impact of microlensing on GW signals in the
LIGO−Virgo sensitivity band. Microlensing caused by an isolated point lens, with (red-
shifted) mass ranging from MLz ∈ (1, 105) M⊙ and impact parameter y ∈ (0.01, 5), can
result in a mismatch exceeding even 30% with their unlensed counterparts. When y < 1,
it strongly anti-correlates with the luminosity distance, enhancing the detection horizon
and SNR. Biases in inferred source parameters are assessed, with in-plane spin components
being the most affected intrinsic parameters. The luminosity distance is often underesti-
mated, while sky-localisation and trigger times are mostly well-recovered. A study of a
population of microlensed signals due to an isolated point lens primarily reveals: (i) using
unlensed templates during the search causes fractional loss (20% to 30%) of potentially
identifiable microlensed signals; (ii) the observed distribution of y challenges the notion
of its high improbability at low values (y ≲ 1), especially for y ≲ 0.1; (iii) Bayes factor
analysis of the population indicates that certain region inMLz −y parameter space have a
higher probability of being detected and accurately identified as microlensed. Notably, the
microlens parameters for the most compelling candidate identified in previous microlens-
ing searches, GW200208_130117, fall within a 1-sigma range of the aforementioned higher
probability region. Identifying microlensing signatures from MLz < 100 M⊙ remains
challenging due to small microlensing effects at typical SNR values. Additionally, we also
examined how microlensing from a population of microlenses influences the detection of
strong lensing signatures in pairs of GW events, particularly in the posterior-overlap anal-
ysis.
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3.1 Introduction

Since microlensing can introduce complex frequency-dependent features in the observed
GW signal, it is important to understand and model these lensing features so that we can
properly construct the unlensed GW signal and deduce the properties of the microlens
itself. Previous studies (e.g., Cao et al. 2014; Lai et al. 2018; Christian et al. 2018; Urrutia &
Vaskonen 2021; Basak et al. 2022; Bondarescu et al. 2023) havemade valuable contributions
in studying the microlensing effects caused by isolated point-lenses. However, most of
the aforementioned studies examined only a restricted microlens or GW parameter space.
For example, the region y < 0.1 has not been studied well due to its low improbability.
However, as we show below, our findings demonstrate that selection bias during detec-
tion amplifies the probability density in this region due to the extended detection horizon
for such signals. These results are consistent with previous studies conducted by Taka-
hashi & Nakamura (2003) and more recently by Bondarescu et al. (2023). Moreover, due to
the computational expense involved in performing a full parameter estimation run, only
a few studies have been conducted in this direction (e.g., Christian et al. 2018; Abbott,
R. and others 2021). Furthermore, some studies only worked primarily in geometrical
optics for simplicity. Additionally, most studies lack a comprehensive population-wide
study that could provide a broader understanding of the phenomenon and make scien-
tific predictions. These limitations pose challenges to gaining a thorough understanding
of the phenomenon. Hence, more detailed studies are required to further improve our
understanding of microlensing effects in GW signals.

In our current work, we aim to address these gaps by studying the effect of mi-
crolensing in a more exhaustive manner: utilizing tools and techniques such as fitting
factor, Bayesian analysis and Fisher-information matrix. We begin by conducting an FF-
based study to investigate the detectability of microlensed signals and demonstrate how
the non-inclusion of microlensing effects during the search can affect the observed SNR.
Furthermore, we examine how the presence of isolated microlenses can enhance the true
source SNR. Next, we explore the bias in the parameter estimation of GW source pa-
rameters when the true signal is microlensed due to an isolated point lens, but the re-
covery model assumes the usual unlensed signal without incorporating any microlensing
effects. To provide a broader perspective, we perform a population study of microlensed
signals, inferring the properties of the population and making predictions about the most
likely microlensing parameter space that will be detected and correctly identified as a mi-
crolensed signal. Additionally, we investigate the identification of microlensed signals
using a Bayes factor study, considering various scenarios such as varying SNR values,
lens masses, and impact parameter values. Finally, we discuss the crucial aspect of how
microlenses in lensing galaxies can affect strongly lensed signals, thereby influencing the
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searches for strongly lensed GW signals. Through these comprehensive analyses, we aim
to shed light on the multifaceted nature of microlensing effects and their implications for
GW signals.

This chapter is mainly based on the paper Mishra et al. (2023b), and is organised as
follows. Inspired by recent searches of microlensing, we focus on the point lens model
in Sections 3.2−3.5. In Sect. 3.2, we study the effect of individual microlenses on the
detection of GW signals. In Sect. 3.3, we study the bias in the estimation of source pa-
rameters of observed microlensed GW signals when recovered using the usual unlensed
WF model. In Sect. 3.4, we study the properties of a mock microlensed population. In
Sect. 3.5, we study the challenges in identifying microlensing signatures in real data. In
Sect. 3.7, we conclude this chapter and discuss its implications. Throughout this chapter,
we use H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and ΩΛ = 0.7 to estimate various cosmolog-
ical quantities. We focus exclusively on transient GW signals originating from compact
binary coalescence (CBCs). All mass-related quantities, including MLz, are consistently
reported in solar mass units (M⊙).

3.2 Effect of microlensing on the detection of GWs:
Matched-filtering Analysis

As discussed in Sect. 2.3.2, there are several reasons why we anticipate FF < 1 (or ρ <
ρopt) in practical scenarios. In the context of microlensing, our objective is to determine
the reduction in SNR resulting from the exclusion of this physical effect in the search
process. Motivated by real GW searches, we use 4D aligned-spin template WFs to recover
themicrolensedWFs, which are modelled by the parameters: chirp mass (Mc), mass ratio
(q), and aligned spin components of the two component masses (χ1z, χ2z). To estimate
minimum loss of SNR during the search, we compute the maximum match (Eq. 2.21), or
the FF, between the microlensed and the unlensed WFs in the 4D parameters listed above.
We use the PyCBC package (Nitz et al. 2020, Usman et al. 2016) for computing match values
(Eq. 2.20), and work with the approximant IMRPhenomPv3 (Khan et al. 2019) with an flow
value of 20 Hz, where flow is the lower frequency cutoff in the evaluation of the overlap
(see Eq. 2.18). The PSD used is aLIGOZeroDetHighPower1, which is comparable to O4
targeted PSDs of LIGO detectors (Abbott et al. 2018)2. The FF values have been computed

1https://dcc.ligo.org/LIGO-T070247/public ;
https://dcc.ligo.org/T1800044-v5.

2https://dcc.ligo.org/LIGO-T2000012/public;
https://dcc.ligo.org/LIGO-T1500293/public.

24

https://dcc.ligo.org/LIGO-T070247/public
https://dcc.ligo.org/T1800044-v5
https://dcc.ligo.org/LIGO-T2000012/public
https://dcc.ligo.org/LIGO-T1500293/public


CHAPTER 3. EFFECT ON INFERRED PARAMETERS

Figure 3.1: Effect of microlensing on GWWFs for different microlensing and CBC param-
eters. The top panel shows match values between the unlensed and the corresponding
microlensed WFs, whereas the bottom panel show FF values (or, the maximum match)
for the microlensed WFs when recovering with the unlensed WFs corresponding to the
4D aligned-spin template WFs modelled by parameters {Mc, q, χ1z, χ2z}. The analysis
has been done for: (i) varying redshifted lens mass (MLz) and impact parameter (y) for
a fixed binary mass of Mtot = 60 M⊙ and mass ratio q = 1 (left panel), (ii) Mtot vs. y
parameter space for fixed (MLz, q) = (100 M⊙, 1) (middle panel), (iii) q vs. y parameter
space for fixed (MLz, Mtot) = (100 M⊙, 60 M⊙) (right panel). The injected spins are kept
zero.

using the Nelder-Mead algorithm as implemented in the `optimization' module of the
Scipy library (Wu et al. 2009). It's important to note that since we employ a maximization
algorithm to compute FF, we do not account for any additional reduction in FF due to the
discrete placement of templates (point (i) below Eq. 2.21 does not apply in our case).

The results are shown in Fig. 3.1, where we study the effect of microlensing on
GW signals for different microlensing and CBC parameters. The top panel shows match
values between the unlensed and the corresponding microlensed WFs, quantifying the
amount by which a WF changes due to microlensing. The bottom panel shows FF val-
ues (or, the maximum match) for the microlensed WFs when recovering with the un-
lensed WFs corresponding to the 4D aligned-spin template WFs modelled by parameters
{Mc, q, χ1z, χ2z}. As discussed above, this loss can lead to a drop in the detection rate
owing to the influence of microlensing on the signals. The analysis has been done for:
(i) varying redshifted lens mass (MLz) and impact parameter (y) for a fixed binary mass
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Figure 3.2: The figure depicts the variation in the optimal SNR in the no-lens versus
microlens cases. The variation is shown as a function of point-lens mass (MLz; left panel),
binary mass (Mtot; middle panel), and mass-ratio (q; right panel). The presence of an
isolated microlens always increases the SNR relative to the no lensing case.

of Mtot = 60 M⊙ and mass ratio q = 1, which represents a "golden"3 black-hole binary
to which our detectors are sensitive from inspiral to ringdown phase of the coalescence
(Hughes & Menou 2005; Nakano et al. 2015; Ghosh et al. 2016) (left panel), (ii)Mtot vs. y
parameter space for fixed (MLz, q) = (100 M⊙, 1) (middle panel), (iii) q vs. y parameter
space for fixed (MLz, Mtot) = (100 M⊙, 60 M⊙) (right panel). The differences between
the match and FF values in the top and bottom panels suggest that microlensing of GW
signals can lead us to infer biased or inaccurate source parameters.

In the leftmost panel, the ranges ofMLz and y have been kept the same as in Fig. 2.2.
The match and FF values are close to 1 for low MLz and high y, consistent with the un-
lensed scenario, and decrease almost diagonally asMLz and 1/y are increased. However,
we notice both match and FF plots have oscillations across equal time delay contours as
shown in Fig. 2.2. Also, the worst match values (or the highest mismatch) come from a
region where wave effects are large, i.e., the region depicted between the two contours
fML = {10, 100} shown in Fig. 2.2. In the middle panel, the match and FF values are
close to 1 for high Mtot and y values, and decrease almost diagonally down for low val-
ues of Mtot and y. The reason we see a high match for higher BBH masses is because
the signal length becomes comparable to the time delay between the microimages asso-
ciated with those lensing parameters. This leads to fewer modulations that can affect the
GW signal. It is also worth noting that the match and the FF contours corresponding
to a value of 97% (red curves) differ significantly in a region where y ∈∼ (0.1, 1) and
Mtot ∈∼ (20, 60) M⊙. Similarly, in the rightmost panel, the FF contours corresponding
to a value of 97% (red curves) change drastically between the top and the bottom panel.
This variation between match and FF values hints towards a strong degeneracy between

3Binaries with total mass ∼ 50− 200 M⊙.
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microlensing the CBC intrinsic parameters and the microlensing parameters.

Although Fig. 3.1 is important to determine the effect of microlensing on the detec-
tion of GWs, it is not sufficient. Since microlensing will also affect the inferred (effective)
luminosity distance, the horizon distance to amicrolensed GW signal will also shift accord-
ingly relative to the unlensed case, and so will the inferred rate of mergers. Therefore, in
Fig. 3.2, we show how optimal SNR can vary in the presence of microlens. The leftmost
panel shows variation in the microlensing parameter space of MLz and y, while keeping
the binary parameters fixed to (Mtot, q) = (60 M⊙, 1). Same with the middle and the
right panels, except we vary Mtot and q, respectively, while fixing MLz = 100M⊙. In all
the panels, the contours represent the ratio of the optimal SNRs between the case when
the microlens is present vs. when it is absent, i.e., ρML/ρUL. This value should tend to
unity at higher impact parameter values, consistent with the darker regions at high val-
ues of y where microlensing effects are insignificant. In the leftmost panel, we observe a
drastic change in the optimal SNR. The SNR in the presence of microlens increases almost
monotonically as we increaseMLz and 1/y, reaching a value of more than 10 times the un-
lensed SNR in the bottom-right corner of the plot. Even for modest values of microlensing
such as (MLz, y) = (10, 1), we observe a 10% increase in the SNR. In the middle and the
right panels, since contour corresponding to the value 1.5 is almost flat, we observe that
the change in SNR is not correlated with varyingMtot and q for higher values of y ≳ 0.5.
However, for lower values of y ≲ 0.5, we do see a correlation in both panels. SNR tends
to increase for lower mass binaries, which is a consequence of longer signal duration, i.e.,
the integrated effect of microlensing over the signal. Although not visible explicitly, when
we examine the variation of the SNR with q, we find oscillatory behaviour of SNR as q
increases. This oscillatory behavior is a consequence of amplitude oscillations in F (f).
As we fix the microlensing parameters,MLz and y, and only vary q, the GW frequency at
ISCOwould decrease monotonically, and so does the strain at maximum strain amplitude.
The oscillations in |F (f)| would then translate to oscillations in the optimal SNR as the
ISCO frequency varies.

In Fig. 3.1, we observed that although microlensing would further decrease the SNR
due to a decrease in FF values, Fig. 3.2 suggests that the SNR itself increases due to the
presence of an isolated microlens. Thus, the effect of microlensing on the detection of
GWs is non-trivial. These figures suggest that the observed distribution of the microlens
population can differ significantly from the expected prior distribution. We study this
statistically in more detail in Sect. 3.4.
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3.3 Effect ofmicrolensing on parameter estimation ofGWs:
Bayesian Analysis

In this section, we study the biases caused by the microlensing effects on inferred source
parameters. We also investigate the correlations between the recovered parameters when
microlensed signals are either recovered with a microlensed WF model or the usual 15D
unlensed WF model. We again employ the isolated point lens model for microlensing.

To understand the effect of microlensing on the inferred source parameters, we do a
Bayesian analysis by performing a set of parameter estimation runs (Cutler & Flanagan
1994; Husa 2009; Thrane & Talbot 2019; Christensen &Meyer 2022). We inject zero-noised
microlensed BBH signals into the three detectors (LIGO Livingston, LIGO Hanford, and
Virgo) having PSDs corresponding to the target sensitivities of the upcoming O4 runs
(Abbott et al. 2018) (see Sect. 2.3.3 for details). The injected signals are non-spinning with
extrinsic parameters corresponding to GW150914, except for the luminosity distance, dL,
which is scaled to obtain a desired SNR. Firstly, we inject and recover a microlensed sig-
nal using a microlensed WF model to see the correlation between the 17D parameters,
especially between the 15D BBH parameters and the two lensing parameters. Then, to
understand the biases in the inferred BBH parameters and their degeneracies with mi-
crolensing, we inject a set of microlensed signals and recover using the usual unlensed
templates, i.e., assuming no microlensing is present in the signal. Parameter estimation
(PE) runs are performed using the publicly available package Bilby-Pipe (Ashton et al.
2020, 2019; Romero-Shaw et al. 2020), keeping all parameters free while recovery. For both
the injection and the recovery templates, we use IMRPhenomXPHM (London et al. 2018) WF
approximant with flow = 20 Hz as the lower frequency cutoff for the likelihood evalua-
tion. As mentioned previously, we use the Dynesty sampler with the following settings:
{nlive=2048, nact=50}, and use n-parallel=4 to combine four independent parallel chains
to get the final posterior sample.

In Fig. 3.3, we study correlations between the 17 parameters of a microlensed WF
λλλML ∈ {λλλUL, MLz, y}, where λλλUL represents the 15 parameters corresponding to an
unlensed BBH WF as described in Sect. 2.3. The injected signals are non-spinning equal
mass binaries having a total mass of Mtot = 60 M⊙ and a network SNR of roughly 50.
Among the microlens parameters, the redshifted lens mass is fixed toMLz = 100 M⊙ and
the impact parameter increases from left to right as y ∈ {0.05, 0.1, 0.5, 1.0,≫ 1} (also
indicated at the top of each column). The top row shows correlations when the recovery
model corresponds to 17D microlensed WFs, while the bottom row depicts correlations
when the recovery model is the usual 15D unlensed BBH WFs. The colours depict Pear-
son correlation coefficients ranging from −1 to 1, where blue cells represent positive
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Figure 3.3: Correlations between the parameters of microlensed WFs. The injected WFs
correspond to a BBH with a total binary mass of Mtot = 60 M⊙, mass-ratio q = 1, and
having observed network SNR of ∼ 50. Among the microlens parameters, the redshifted
lens mass is fixed to MLz = 100 M⊙ and the impact parameter increases from left to
right as y ∈ {0.05, 0.1, 0.5, 1.0,≫ 1} (also indicated at the top of each column). Top:
correlations when the recovery model corresponds to 17DmicrolensedWFs. Bottom: cor-
relations when the recovery model is the usual 15D unlensed BBH WFs.
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correlations (> 0) and orange cells represent negative correlations (< 0). The matrix is
symmetric by construction. Studying the top row of the figure, we first notice that the
correlations of MLz and y with other parameters are mostly of opposite sign (see, e.g.,
opposite tonalities in the bottom two rows of each subpanel for almost all the parameters
where correlations are significant.). This is expected as the effect of increasing MLz and
decreasing y favours microlensing effects, and vice-versa. It is worth noting that the lumi-
nosity distance dL shows maximum correlation with the microlensing parameters, which can
even exceed ∼ ±90%. For lower values of y < 1, the anti-correlation can increase signifi-
cantly. This is because as y decreases, the magnification of micro-images increases even
more rapidly, which is compensated by an increase in the effective distance of the binary,
thereby showing strong negative correlations. This justifies our earlier result of how opti-
mal SNRs (or distance estimates) get significantly affected due to microlensing, as shown
in Fig. 3.2. Next, the (detected) chirp mass Mdet

4 also shows interesting correlations and
can be as high as∼ ±30%, while the spin components show only weak correlations with
the microlensing parameters. However, even small correlations can have severe effects in
the parameter estimation considering the sensitivity of WFs to these parameters. To give
an idea, the mismatch between a non-spinning WF, as considered in this exercise, with a
WF (i) having a small effective spin χeff = 0.05 is> 5%, (ii) having only a slight variation
of 1% in the chirp mass is ∼ 3%5. Apart from the luminosity distance dL and the trigger
time6, tc, other extrinsic parameters such as the sky location parameters, right ascension
and declination (α, δ), the polarisation angle (ψ), the phase of coalescence (ϕ), and the
inclination θJN show only negligible correlation with microlensing. Another important
thing to note is that the two microlensing parametersMLz and y show a strong negative
correlation among themselves, which increases with increasing y from left to right up to
y = 1, reaching a value < −95% for y = 1. This suggests that the correlation between
the two parameters increases in the geometric optics limit. Therefore, while doing the
17D microlens parameter estimation, sampling in these two parameters directly will not
be the most efficient choice, and one may resort to different combinations of these two
parameters like the relative magnification and the time delay between the micro-images,
as used in Liu et al. (2023).

Now focusing on the bottom row of Fig. 3.3, if only the unlensed WF model is used
in recovering a microlensed signal, there will be several indirect (yet significant) correla-

4We explicitly write ``detector frame" here to avoid confusion with the source frame chirp mass, which
will be highly biased due to a biased inference of the luminosity distance (or, the redshift).

5A mismatch value above 1% is large enough to bias the inferred parameters for an event with SNR
≳ 15.

6Similar behaviour is observed for the `jitter time' when the time-marginalisation is used.

30



CHAPTER 3. EFFECT ON INFERRED PARAMETERS

Figure 3.4: Bias in the inferred intrinsic source parameters of a microlensed signal when
recovered using the usual unlensed WF model, characterised by 15 parameters. Each
column represents the bias in a specific parameter, indicated at the top, while differ-
ent rows correspond to different source binaries, indicated on the right side of each
row. The intrinsic parameters are represented by the detected chirp mass (Mdet), sym-
metric mass-ratio (η), projected effective spin (χeff), and precession effective spin (χp).
The source parameters correspond to equal mass binaries with a mass ratio of q = 1

and a total mass of Mtot/M⊙ ∈ {20, 60, 100, 200}. Each subplot shows the bias in
the microlensing parameter space of the redshifted lens mass, denoted as MLz/M⊙ ∈
{1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4, 5e4, 1e5}, and the impact parameter values denoted as
y ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 3.0, 5.0}. Each circular marker in the plot has two halves:
the left half represents the relative percentage error (absolute error for χeff and χp) be-
tween the median values of the microlensed and unlensed recoveries, while the right
half represents the two-sample Kolmegorov-Smironov (KS) Statistic value between the
1D marginalised posteriors of the microlensed and unlensed recoveries (in percentage).
We further ignore points in the parameter space corresponding to a time-delay between
microimages greater than the signal duration, indicating cases where strong lensing is
observed (empty region in the top-right corner of each subplot).
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Figure 3.5: Same as Fig. 3.4, but for extrinsic parameters. The extrinsic parameters are
represented by the luminosity distance (dL), inclination (θJN), sky location (RA and Dec; α
and δ), polarization angle (Ψ), and coalescence phase (ϕ). The trigger time tc is not shown
as it is well recovered throughout the parameter space.32
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tions between the BBH parameters and the microlensing parameters, as parameters that
are directly correlated with microlensing parameters will further affect other parameters
that are strongly correlated with them, and so on. When this cascade effect is in place,
it will drastically affect parameter estimation. Such an effect can be seen for the two
leftmost cases y = {0.05, 0.10} in the bottom row of Fig. 3.3, where almost all the BBH
parameters have become strongly correlated. It is worth noting that these two cases fall
in the long-wavelength regime. This behaviour could be a general characteristic of the
bottom-right corner of the long wavelength regime, where microlensing effects are strong but
slowly varying.

As a reference, the rightmost panel show the correlations when the injected WF is
unlensed, while the recovery model is either microlensed (top-right panel) or unlensed
(bottom-right panel), highlighting the usual correlations present among the BBH param-
eters. The variation in the correlation coefficient values compared to the unlensed case
is clearly visible as we vary the impact parameter. With changing y, the correlations
become intertwined in different ways in an attempt to absorb microlensing effects. It is
interesting to note that the sign of correlations can also change, i.e., the correlation be-
tween parameters can rotate due to microlensing effects. For example, the variation in the
correlation between Mdet and tc changes from a slightly positive correlation to a strong
negative correlation as we decrease the impact parameter y. A similar effect can be ob-
served for spin components which show strong correlations with other parameters and
among themselves as we compare the leftmost panel with the other three panels.

In figures 3.4 and 3.5, we show biases in the inferred parameters when the injected
microlensed signals are recovered under the assumption of unlensed hypotheses. The
injected signals are such that their observed SNR is roughly 50, which is achieved by
tweaking the luminosity distance accordingly. Fig. 3.2 then implies that we keep the sig-
nals at higher distances as the lens mass increase and the impact parameter decrease. We
choose specific grid points to cover the microlensing and source parameter space. For
microlensing, we choose the redshifted lens mass values as MLz/M⊙ ∈ {1e1, 5e1, 1e2,
5e2, 1e3, 5e3, 1e4, 5e4, 1e5}, and the (possible) impact parameter values as y ∈ {0.01,
0.05, 0.1, 0.5, 1.0, 3.0, 5.0}. We further ignore those points in the parameter space that
correspond to a time delay between microimages greater than the signal duration, i.e.,
cases where strong lensing is observed (see the empty region in the top-right corner of
each subplot). The source parameters correspond to the equal mass binaries having mass
ratio q = 1 and total massMtot ∈ {20, 60, 100, 200}. The x and y axes in each subplot
represent varying MLz and y values, respectively. Each column represents the bias in
a specific parameter as indicated at its top, while different rows correspond to different
source binaries as indicated on the right side of each row. Each circular marker in the plot
has two halves, with the left half representing the relative percentage error between the
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median values of the microlensed vs unlensed recoveries, while the right half represents
the two-sample Kolmegorov-Smironov (KS) statistic value between the 1D marginalised
posteriors of the microlensed and the unlensed recoveries (in percentage). For param-
eters χeff and χp, the left half represents the percentage absolute error rather than the
relative error as their injected values were zero. The KS statistic value for two cumulative
distribution functions, C1(x) and C2(x), is defined as

KS = max
x

|C1(x)− C2(x)|, (3.1)

which is more sensitive to the change in the distribution itself compared to the change
in the median values. So in simple words, the left half indicates the bias in the recovery,
while the right half indicates the change in the 1D marginalised posterior distribution,
both converted to percentages.

In Fig. 3.4, we show bias in the intrinsic parameters, i.e., in masses and spins of the
binaries. The detected chirp massMdet and symmetric mass-ratio η represent the masses,
while the projected effective spin χeff (Racine 2008; Ng et al. 2018) and precession effective
spin χp (Gerosa et al. 2021; Schmidt et al. 2015) represent the spins of the BBHs. These
two-dimensional effective spin quantities, χeff and χp, offer a simplified interpretation of
the six-dimensional spin parameters. For all the parameters and binary masses (i.e., all
the subplots in the figure), we see negligible biases in the recoveries for low MLz and
1/y values as the leftmost and topmost array of markers suggest errors to be ≲ 1% in
most of the subplots (see the left halves of the markers for the data points having either
MLz = 10 or y = 5). This is expected as it corresponds to negligible microlensing effects
that are difficult to be detectedwith the current sensitivities of the ground-based detectors.
However, even in this negligibly-lensed regime, the biases in the spin parameters reach
∼ 10% in a few cases, which is a result of bad recoveries of the spin parameters in general,
as they appear higher in the post-Newtonian orders. Additionally, the two mass-related
parameters, Mdet and η, are usually well recovered forMLz ≲ 100 M⊙, where we expect
a larger number of microlenses.

As suspected in Fig. 2.2 of Sect. 2.1, we indeed observe the biases to increase in the
wave zone for all the parameters. This is especially clear if we look at the bottom-most row
corresponding to the (100, 100) M⊙ binary, where biases seem to be more streamlined
and increasing along the diagonal from lowerMLz and 1/y values to higher values in each
column. As we move up the rows to lower binary masses, this pattern along the diagonal
broadens and eventually covers up a large parameter space, even spanning regions in the
long-wavelength regime, as we see in the case of (10, 10) M⊙ binary. One of the reasons
for such broadening of the biases along the diagonal from the wave zone toward the long-
wavelength regime is due to the fact that lower mass binaries tend to cover a broader
frequency spectrum, i.e., they have a higher power in high frequencies as compared to
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Figure 3.6: 1D marginalised posterior distributions for the recoveries of {Mdet, q, a1}
of the 60M⊙ binary system shown in Fig. 3.4 and 3.5. The dashed red line represents the
injected value

heavier binaries. From Fig. 2.2, it is then expected that such a signal with significant
contribution from high frequencies will also show bias in the long-wavelength regime,
i.e., for lowerMLz and y values.

Of the four parameters, the spin parameters seem to be biased themost, especially the
precession effective spinχp, as compared to the chirpmassMdet and the symmetric mass-
ratio η. This is also true in the usual parameter estimations of the unlensed signals owing
to their appearance in the different post-Newtonian orders. Chirp mass and symmetric
mass-ratio give the most dominant effect at 0th PN order of GW phasing while χeff and
χp appear at 1.5 PN and 2.5 PN orders, respectively (Arun et al. 2005; Schmidt et al. 2015;
Isoyama et al. 2020). The recoveries for χp exhibit biases across most of the parameter
space in each row, particularly in the wave zone, and these biases appear to decrease as we
move down the row toward heavier mass binaries. This suggests that the biases in χp are
correlated with the length of the microlensed signal. It is also worth noting that even for
the modest values in our microlensing parameter space, such as (MLz, y) ∼ (102, 1), the
recovery of χp show significant biases. Thus, the bad recoveries for longer signals indicate
that microlensing and spin-precession are degenerate with each other. Therefore, any signal
showing signs of precession must also be analysed for the presence of microlensing signatures
to break the degeneracy. However, vice-versa may not be true, i.e., it is unlikely that the
presence of precession can bias microlensing searches. This is because the unlensed parameter
space is always a subset of the microlensed parameter space.

Similarly, in 3.5, we show the bias in the recoveries of the extrinsic parameters, i.e.,
luminosity distance (dL), inclination (θJN), RA (α), Dec. (δ), polarisation angle (ψ) and
coalescence phase ϕ. We do not show the recoveries of trigger time tc as we do not see
any appreciable bias in its recovery. Among all the cases studied here, the absolute errors
for tc never exceeded 5%. We notice that the most affected parameter is the luminosity
distance, as it gets directly affected due to the modulations in the amplitude induced by
microlensing. On the other hand, the sky position parameters Ra and Dec are among
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the best-recovered parameters not affected by microlensing. This is expected since the
localization of GW sources is mainly based on the observed time delays between each
pair of interferometers. Since microlensing does not affect the observed trigger times, the
localisation is not affected except when microlensing effects are extreme.

The KS values (right halves of the markers) show a similar trend as that of errors.
It is interesting to note that in most cases, the right half of the circle is darker than the
one on the left, indicating that KS values are more sensitive to microlensing effects than
the bias in the inferred parameters. This can be seen in Fig. 3.6, where we explicitly show
the marginalised 1D posterior distributions for three parameters {Mdet, q, a1} for the
case having binary mass 60M⊙. In the leftmost panel, one can notice several cases where
the distribution shifts because of microlensing effects even when the posterior mode itself
hasn't changed much. These cases are examples that result in a high KS-value but a low
relative error. In contrast, there are several cases in the middle and the rightmost panels
where the recovered distribution is significantly biased and is also well converged (e.g.,
see well-converged distributions in the rightmost panel for a1 away from the injected
value of 0). Such cases result in a high relative error as well as a high KS-value (markers
with both left and right halves coloured as dark blue in Fig. 3.4 and 3.5).

Lastly, in Fig. 3.7, we examine the variation in Pearson correlation values between
GW parameters for the (30, 30)M⊙ binary discussed earlier (second row in Figures 3.4
and 3.5). The left panel illustrates the correlation values for all possible 120 pair combi-
nations of the 15 parameters (represented by different shades of blue). The x-axis corre-
sponds to the time delay between microimages associated with the microlens parameters
considered for that binary. The data points, indicated by circular dots, consist of 54 data
points for each of the 120 lines. Additionally, the lines originate from τd = 0, repre-
senting the unlensed case. The line with a Pearson correlation value of unity indicates
the diagonal elements of the correlation matrix, which represents the correlation of a pa-
rameter with itself. The purpose of this plot is to demonstrate how correlations can vary
based on the microlens parameters. It is evident that correlations can significantly fluc-
tuate depending on the specific microlens parameters. For instance, there is a notable
concentration of lines around zero at low time delay values (τd < 10−5 s), which becomes
sparser at τd = 10−3 s. Since it is not possible to follow which line corresponds to which
correlation pair, we specifically show the correlations for four pairs in the right panel, as
written in the legend.
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Figure 3.7: Variation in the correlation values between the 15 parameters of a BBH system
due to microlensing effects. The studied BBH and lens system corresponds to the 60 M⊙

binary shown in Figures 3.4 and 3.5. Left: The variation is displayed for each parameter
pair, resulting in a total of 120 possible pairs represented as individual lines. These lines
illustrate the correlation values as a function of the time-delay between micro-images,
determined by the microlens parameters in the grid shown in Fig. 3.4 and 3.5. Each line
is associated with 63 data points, represented as dots, indicating the specific time-delay
values used to construct the line. Right: Same as the left panel but explicitly showing the
correlations for four pairs as written in the legend. Moreover, the lines originate from
τd = 0, showcasing the unlensed case.

3.4 Study of a population of Microlensed Signals

In this section and the subsequent section, we investigate a population of microlensed sig-
nals. In contrast to the previous sections, where we either fixed certain parameters while
varying others or chose a grid to cover the parameter space, in this section, we sample the
sources realistically to infer the population-wide distributions of parameters. We will pay
particular attention to the microlens parameters, which is the focus of this study. Further-
more, analyzing the population statistics allows us to explore various aspects, such as the
effectualness of unlensed WFs in detecting microlensed WFs and the potential parameter
space for microlensing detection.

We generate mock GW data of around 2.5 × 104 microlensed BBH signals, where
BBH parameters are derived from the population model constructed using the GWTC-3
catalogue (Abbott et al. 2023; The LIGO Scientific Collaboration et al. 2023b). We put an
observed network SNR threshold of 8when using the unlensed templates for recovery, and
the detector noise PSDs used correspond to the target O4 sensitivities (Abbott et al. 2018).
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The population model basically provides a fit to the distribution of observed parameters,
particularly masses, spin magnitudes, spin tilts, and the redshift distribution of the BBH
mergers. All other BBH parameters are sampled uniformly from their respective domains.
For microlens parameters, we assume a log-uniform prior in MLz (in units of M⊙) and a
power-law prior for y with an index of unity (a linear prior):

p(MLz) ∝ LogUniform(101, 105),

p(y) ∝ y, y ∈ (0.01, 3.00),
(3.2)

where the motivation to use p(y) ∝ y comes from geometry and isotropy (Lai et al. 2018).
Towit, the probability of a source having an impact parameter y relative to amicrolenswill
be proportional to the area of a ring of infinitesimal width having radius y, i.e., p(y)dy =

2πydy. We assume Madau-Dickison profile for the merger rate density in the universe,
giving source-redshift density model as (Madau 1997; Fishbach et al. 2018):

p(zS) ∝
dVc
dzS

1

1 + zS
ψ(zS),

where ψ(zS) = 0.015
(1 + zS)

2.7

1 + [(1 + zS)/2.9]5.6
.

(3.3)

The source redshift range was set to be zS ∈ (0.001, 10), with the lower limit of zS ≡
zmin = 0.001 ∼ O(1) Mpc corresponding to a value below which merger rate is negli-
gible due to low cosmological volume and star formation rate. The upper limit of zS ≡
zmax = 10 serves as an approximate representation of the maximum distance from which
a microlensed signal can be detected using current ground-based detectors. This limit
assumes ideal conditions such as low impact parameters, a high lens mass, and a mas-
sive binary system as the source. For instance, a system characterized by parameters
(MLz, y, Mtot, ι) = (104, 10−2, 200, 0) exemplifies these ideal conditions.

In Fig. 3.8, we show a mock sample of the detectable microlensed population - its
distribution and the inferred properties. The top row shows the network optimal SNR
as a function of MLz and y (left panel), y vs. zS (middle panel), and MLz vs. zS (right
panel). Firstly, we note that using only unlensed templates during the search of these
microlensed signals, we detected around 91.6% of total signals (using Eq. 2.21) in the
parameter space considered here. We observe that most of the detected signals tend to
have higher impact parameters, which is expected based on our initial assumption given
in Eq. 3.2. However, as predicted in Fig. 3.2 of Sect. 3.2, it is worth noting that we do
detect a significant number of events in the range y ∈ (0.01, 0.1) as well, which is usually
considered to be a probabilistically insignificant region. The top-middle panel confirms
the hypothesis that these signals with low-impact parameters can indeed arrive from far
away regions (z ≳ 2) as opposed to the current detection horizons for unlensed BBH
signals (z ≲ 1). This is a consequence of an increase in their SNR values because of
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Figure 3.8: Population study of microlensed BBH signals for the joint network of
LIGO−Virgo detectors assuming the targeted O4 sensitivities. Top: Distribution of pop-
ulation is shown in the microlensing parameter space of MLz and y (left), and for y vs.
zS (right), where MLz, y and zS denote the redshifted lens mass, impact parameter and
source redshift, respectively. The colour bar represents the observed network optimal
SNR. Bottom: Comparison of probability density functions (PDFs) between the ones that
were used while generating the population (black coloured curves), and the ones inferred
from the observed population themselves (red coloured curves). The PDF comparison is
shown for three parameters, y (left),MLz (middle) and zS (right).

microlensing, and hence an increase in their detection horizon (see the left-most panel in
Fig. 3.2). We also notice that even in the case of population, the behaviour of FF in MLz
and y plane (top-left panel) is similar to the behaviour of FF shown in Fig. 3.1, where we
had kept the binary mass fixed.

The bottom row of Fig. 3.8 illustrates the comparison of probability density functions
(PDFs). The black curves represent the PDFs used for sampling during the population
generation (referred to as the "prior"; see Eq. 3.2), while the red curves represent the PDFs
inferred from the detected population itself. The PDF comparison is shown for three
parameters, y (left panel) and MLz (middle panel) and zS (right panel). We use kernel
density estimation (KDE) to obtain the PDFs from the observed data. The comparison of
PDFs for the impact parameter, p(y), shows very interesting behaviour. At low values of
y (≲ 1), the observed signals have roughly a flat density profile in y, instead of the linear
profile used as the prior (Eq. 3.2; see black curve). The reason for this behaviour can be
attributed to the behaviour of magnification due to a point-lens, which is only a function
of y, given by

µ±(y) =
1

2
± y2 + 2

2y
√
y2 + 4

. (3.4)
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It can be seen that in the limit y ≪ 1, µ±(y) becomes proportional to 1/y, which in turn
increases the detection horizon, thereby increasing the relative probability density in that
region.

On the other hand, the probability density profile for MLz (bottom-middle panel) is
roughly similar to our initial assumption of a Log-uniform distribution with only a slight
preference for lower masses compared to heavier masses. This slight preference for lower
masses (log10MLz ≲ 2.5) is a result of better FF recovery values in that region as shown
in the bottom left panel of Fig. 3.1, owing to smaller microlensing effects. If we instead
recover with the microlensed templates instead of the unlensed ones, we find p(MLz) to
be evenmore consistent with the Log-Uniform distribution showing no special preference
for any mass values. This indicates that the behaviour of FF is indeed the reason behind
the slight preference for lower mass values in case of unlensed recoveries. The probability
density of the source redshift p(zS) (bottom-right panel) shows a similar trend as if there
were nomicrolensing (e.g., see Fig. 2 in Fishbach et al. 2018) but with a longer tail reaching
much higher values up to z ∼ 5 as opposed to the current detection horizons for BBH
signals (z ≲ 1) (also see The LIGO Scientific Collaboration et al. 2023b).

We showed that the selection bias incurred during detection would significantly af-
fect the properties of the observed population compared to the true microlensed popula-
tion. However, not all the observed microlensed events will be correctly identified as be-
ing microlensed, i.e., having significant evidence for the microlensing hypothesis over the
unlensed hypothesis. For example, a low SNR event that has lowMLz and high y values,
such as (MLz, y) = (10M⊙, 3), would not be correctly identified as being a microlensed
event with the current sensitivities of the detectors. Therefore, in order to predict the
parameter space which has a higher potential of being detected and also identified as a
microlensed event, we should anticipate a further selection bias on the detected events.
This involves weighing events according to their microlensing effects, i.e., the events with
higher microlensing effects are more probable to be correctly identified as microlensed.
In the next section, we investigate this bias and present a combined PDF that incorporates
both the detection and identification aspects.

3.5 Model Comparison: Unlensed vs. Microlensed hypoth-
esis

In this section, we study the detectability of microlensing effects and discuss the chal-
lenges associated with it. In other words, we do a model comparison study between the
unlensed and microlensed hypothesis (see Sect. 2.3.4 for details).
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Figure 3.9: The figure shows log Bayes factor values, log10 BML
UL , for the evidence for mi-

crolensed hypothesis (HML) over unlensed hypothesis for varying network SNR, ρnet
opt ∈

{8, 13, 20, 32, 50}, redshifted lens mass, MLz ∈ {5, 20, 35, 50, 100}M⊙, and impact pa-
rameter values, y ∈ {0.1, 1.0}.

In Fig. 3.9, we show Bayes factor values, log10 BML
UL , for the evidence of microlensed

hypothesis over unlensed hypothesis for varying network SNR, ρnet
opt ∈ {8, 13, 20, 32, 50},

redshifted lens mass, MLz ∈ {5, 20, 35, 50, 100}, and impact parameter values, y ∈
{0.1, 1.0}. A low impact parameter value of 0.1 is chosen to foresee results in the case
of best-case scenarios while y = 1 represents the characteristic value of y. For microlens
parameter recoveries, we set priors as p(MLz) ∝ LogUniform(10−1, 105) and p(y) ∝
y, y ∈ (0.01, 3.00). We limit ourselves to only lower microlens masses (MLz ≤ 100M⊙)
because, from an astrophysical standpoint, more massive BH lenses are less probable.
The black and red lines correspond to a Bayes factor value of e and e3, respectively, and
mark the threshold for the positive and strong evidence for microlensing. This thresh-
old has been set following the interpretation of Bayes factors as given in Kass & Raftery
(1995), which sets a higher cutoff for the strong evidence as compared to the Jeffrey's
scale (Deutsch 1999)7. In this and subsequent sections, we will use the terms "positive"
and "strong" to characterise the strength of evidence in accordance with the terminology
used in the aforementioned references. We can see how SNR exponentially increases the
Bayes factor values, especially in the left panel for y = 0.1, where microlensing effects
are higher than in the right panel. We find that up to an SNR of 13, microlensing effects
due to MLz < 100 M⊙ do not show any interesting Bayes Factor recoveries in favour of
microlensing. It is important to note that an SNR of 13 is above the expected average SNR
of the detected events (≈ 12; see Schutz (2011)), as PDF for the SNR goes as p(ρ) ∝ ρ−4.
Considering the fact that in the real GW data noise will bring in additional complexities,

7However, we note that a better approach to interpreting the Bayes factor values would be to do a
background injection study.
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Figure 3.10: Bayes factor study for the microlensed population estimated using the FF and
the SNR (ρ), i.e., lnBML

UL ≈ (1−FF 2)ρ2/2. Top row: FF values and the Bayes factor values
for the evidence of microlensing over the unlensed hypothesis (log10 BML

UL ) are shown in
the microlens parameter space of the observed population. Bottom row: The probability
density functions (PDFs) for the microlens parameters are shown for four cases: (i) our
prior assumption, (ii) the detected population (selection bias), (iii) the population that
is detected and also correctly identified as being microlensed assuming a threshold of
log10 BML

UL > 3 log10(e), and (iv) same as (iii) but with a higher threshold of log10 BML
UL >

9 log10(e). These threshold values are chosen to investigate various confidence levels in
a microlensed event detection while also taking into account the uncertainties related to
using the approximation for BML

UL .

it seems highly unlikely that we will detect microlensing forMLz < 100M⊙ with current
sensitivities of the detectors. However, for high SNR events, microlensing effects from
even small mass microlenses become detectable, such asMLz ≳ 20 M⊙ for SNR 50.

In the right panel of Fig. 3.9, we notice that for the characteristic value of the impact
parameter y = 1, the microlensing model is not favoured for MLz < 50 M⊙ upto an
SNR of 32, which further showcases the difficulty of correctly identifying a microlensed
event. An important consequence of this is the fact that in dark matter constraint studies
using microlensing, one should, in principle, incorporate SNR dependence. That is, the
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Figure 3.11: Same as Fig. 3.9, but with added theoretical estimates (cross marks) using
Eq. 2.33 for comparison. For nested sampling, the dashed black and red lines have a similar
meaning as in Fig. 3.9, representing the threshold values for positive and strong evidence
formicrolensing, respectively. For the theoretical estimate, these values are depicted using
dashed and solid red lines, respectively.

microlens parameter space that can be correctly identified to be amicrolensed event is SNR
dependent. Hence, a non-detection of the microlensed event can only put a constraint on
the fraction of dark matter in the parameter space where it is sensitive to detecting those
microlensing effects. If such an SNR dependence is not included, it will result in an over-
constraint on the dark matter fractions.

The aforementioned observation inspires us to inquire about the microlens param-
eters that are most likely to be detected and also correctly identified as microlensed. In
Fig. 3.8, we presented the distribution of the detected microlensed population. Now in
Fig. 3.10, we conduct a more thorough analysis of this population to determine such pa-
rameter space where microlensing is most likely to be detected. Although a rigorous
approach would require computing Bayes factors for the population using nested sam-
pling algorithms, it will be highly expensive computationally. Therefore, we exploit the
expression given in Eq. 2.33 to estimate the Bayes factors. However, a more rigorous study
would require estimating Occam's factor as well. As mentioned in 2.3.4, since the Occam's
factor term is just the ratio of the posterior to the prior volume, one can estimate it using
the (inverse of) Fisher matrix by computing the ratio of the uncertainty in the recovered
value of an extra parameter to the prior volume for that parameter. These uncertainties
in the parameter roughly scale inversely with the SNR.

Assuming the prior volume to be a unit hypercube of d dimensions, in the case of a
true microlensed signal with a sufficient SNR value, the information content in the pos-
teriors would be higher for the microlensing (ML) hypothesis compared to the unlensed
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(UL) hypothesis. Consequently, the ratio of the posterior volume to the prior volume
would be smaller for the HML hypothesis. Thus, the second term in Eq. 2.32 becomes

ln OML
UL ≈ ln ∆VML

∆VUL
< 0. (3.5)

Since we are neglecting this term, we conclude that we are mostly over-estimating the Bayes
factors when we use Eq. 2.33. This reasoning is supported by the observations in Fig. 3.11.
In this figure, we compare the numerically computed Bayes factors (using nested sam-
pling) displayed in Fig. 3.9 with the theoretically estimated BML

UL values (indicated by cross
marks) obtained using Eq. 2.33. We observe that, in almost all cases, our approximation
tends to overestimate the true value of BML

UL , and its performance improves as the SNR
increases. For example, one can see that for SNR values of 32 and 50 in Fig. 3.11, the
difference between the numerically computed Bayes factors with that of theoretically es-
timated ones is quite small compared to what we notice for lower SNR values (≲ 20).

Our investigation demands that when estimating log10 BML
UL using Eq. 2.33, we em-

ploy a higher threshold for positive/strong evidence for microlensing compared to estab-
lished scales like Kass-Raftery's scale (Kass & Raftery 1995). For our purpose, we choose
this threshold heuristically based on our observation in Fig. 3.11. Specifically, we set the
threshold values to be three times that of the Kass-Raftery's scale. For positive evidence
for microlensing, we consider log10 BML

UL ∈ (3 log10(e), 9 log10(e)). For strong evidence,
we require log10 BML

UL > 9 log10(e). By setting these higher thresholds, we aim to ensure
that our assessment of positive or strong evidence for microlensing is conservative and
accounts for the potential overestimation indicated by our analysis.

We now apply the method described above to analyse the distribution of Bayes fac-
tors using FF values, as given by Eq. 2.33, for the population generated in Sect. 3.4. In
the top row of Fig. 3.10, we present the FF values and the corresponding Bayes factor
values (log10 BML

UL ) in the microlens parameter space of the observed population. While
in the bottom row, the probability density functions (PDF) for the microlensing param-
eters, MLz and y, are shown for four cases: (i) our prior assumption (black line), (ii) the
detected population (red line; as also shown in the bottom row of Fig. 3.8), (iii) population
that is detected and also correctly identified as being microlensed assuming thresholds as
discussed above, i.e., log10 BML

UL > 3 log10(e) (solid blue line; representing threshold for
positive evidence for ML), and (iv) a higher threshold of log10 BML

UL > 9 log10(e) (dashed
blue line; representing threshold for strong evidence forML). Here we employ two distinct
threshold values to study how different levels of evidence for microlensing influence the
probability density in the lensing parameter space. We observe that the FF values exhibit
similar behaviour and range of values as shown in Fig. 3.1, where the source binary was
kept fixed. The Bayes factor values also show interesting values in the region where FF
values are low (darker and bigger circles), especially the lower end of the wave zone as
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(a) log10 BML
UL ∈ (3 log10(e), 9 log10(e)); Ex-

pected microlensed population detectable with
low confidence.

(b) log10 BML
UL > 9 log10(e). Expected mi-

crolensed population detectable with high con-
fidence.

Figure 3.12: The corner plots depict the probable region in the microlensing parame-
ter space for a point lens that can be detected and identified as a microlensed event in
the joint network of LIGO−Virgo detectors, assuming the targeted O4 sensitivities. The
Bayes factor values of the population and the probability density functions (PDFs) of
the microlens parameters are explicitly shown in Fig. 3.10. The panels on the left and
right use different threshold values for log10 BML

UL , which is estimated using the expres-
sion lnBML

UL ≈ (1 − FF 2)ρ2/2. These threshold values are chosen to explore different
confidence levels for claiming a microlensed event detection while also considering the
uncertainties associated with this approximation. The contour plot in the 2D space and
the red lines in the 1D distributions represent credible regions with quantile values of
16%, 50%, and 84%.

discussed in 2.2. On the other hand, we do not observe any appreciable BML
UL values for

lowerMLz and y values, where the number of detections is also relatively low. When we
set a threshold of 3 log10(e) for the recovered log10 BML

UL , we find that the distribution of
p(y) peaks around y = 1, while p(MLz) peaks at log10MLz = 3. Additionally, there is
a slight bimodality in the distribution of p(y), with another peak observed at a lower y
value around 0.2. This bimodality arises from the fact that although lower y values lead to
stronger microlensing effects, their detection probability is lower compared to those with
higher y values. When we increase the threshold to BML

UL > 10, we find that the bimodal
distribution in y converges to a value close to the lower peak at y ∼ 0.3. Moreover, for
p(MLz), a higher threshold causes the peak to shift towards higher MLz values, around
MLz ∼ 4.5.

In Fig. 3.12, we provide corner plots for the microlens parameters, showcasing the
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Table 3.1: Effect of using unlensed templates during the search for microlensed signals.
Below, ``Total" refers to all the events; ``ML" (``UL") refers to the case when microlensed
(unlensed) templates are employed for search;N1 depicts the total number of events with
log10 BML

UL > 3 log10(e), indicating events with mostly positive evidence in favour of mi-
crolensing; N2 depicts the total number of events with log10 BML

UL > 9 log10(e), indicating
events with strong evidence in favour of microlensing. Here we estimate log10 BML

UL using
Eq. 2.33. ϵML

UL denotes the fractional loss of microlensed signals when unlensed templates
are used during the search, as defined in Eq. 3.6.

Total N1 N2 N1/Total N2/Total
[%] [%]

ML 25458 8137 3734 32.0 14.7
UL 23318 6481 2653 27.8 11.4

ϵML
UL [%] 8.4 20.4 29.0 13.1 22.4

distribution of microlensed events that were detected and (potentially) identified as mi-
crolensed within our microlensed population. The contour plot in the 2D space and the
red lines in the 1D distributions represent credible regions with quantile values of 16%,
50%, and 84%. These correspond to the median with 1σ uncertainty on either side. The
left panel of the figure depicts cases where the evidence for the microlensing (ML) hy-
pothesis is positive, specifically when log10 BML

UL ∈ (3 log10(e), 9 log10(e)). In simpler
terms, the left panel predicts the distribution of microlensed events that would be in-
teresting candidates in the search for microlensed events but may not be definitively
confirmed as such. The conclusions drawn from these events would likely remain in-
conclusive due to various systematics that could mimic similar behaviour. Up to an un-
certainty of 1−sigma, the most probable parameters8 that will show only positive evidence
for ML are (log10MLz, y) = (3.35+1.13

−0.93, 1.21+0.68
−0.51). Meanwhile, the right panel highlights

events that would be identified as microlensed with a high degree of confidence, with
log10 BML

UL > 9 log10(e). The most probable parameters for such confidently detected mi-
crolensed events would be (log10MLz, y) = (3.76+0.86

−0.88, 0.58+0.70
−0.37).

It is interesting to note that among all the super-threshold events detected by LIGO
and Virgo detectors so far, the most compelling candidate in the microlensing search was
GW200208_130117 during the third observing run (The LIGO Scientific Collaboration

8We note that a lot of reasonable assumptions have gone into making such a prediction. The population
is generated assuming an O4-like sensitivity. The Bayes factor estimation is not rigorous and we ignore
some other factors such as noise systematics, its degeneracy with other physical effects like eccentricity,
etc.
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et al. 2023a; Janquart et al. 2023). This event exhibited the highest Bayes factor value for
the evidence of microlensing over the unlensed hypothesis, with a value of log10 BML

UL ∼
0.99. However, the paper concluded the data is inconclusive about the microlensing hy-
pothesis, and it was hinted that the effect could be due to some short-duration noise fluc-
tuations in one of the detectors. The recovered microlens parameter values for the event,
with median values and 1-sigma errors, are (log10MLz, y) = (3.15+0.18

−0.21, 1.07+0.61
−0.32). Inter-

estingly, we note that this recovered value is remarkably close to our predicted value of
(log10MLz, y) = (3.35+1.13

−0.93, 1.21+0.68
−0.51) (see Fig. 3.13 for the comparison) for events that

would only positively support the microlensed hypothesis. Hence, based on our popula-
tion study, there is suggestive evidence in favour of the microlensing hypothesis for the event
GW200208_130117. However, it is important to acknowledge that this study is not rig-
orous enough to claim lensing with certainty, and therefore, the ultimate nature of this
event remains inconclusive.

Furthermore, in Table 3.1, we present the derived statistics from our population, par-
ticularly focusing on the fractional loss of signals caused by employing unlensed templates
during the search for microlensed signals. The fractional loss, ϵML

UL , is defined as:

ϵML
UL ≡ 1− n(UL)

n(ML) , (3.6)

where n(UL) and n(ML) represent the number of events quoted in the row labelled as
`UL' and `ML', respectively. These labels indicate scenarios where unlensed templates and
microlensed templates are used to recover the signals, respectively. Within the parameter
space of MLz ∈ (10, 105) and y ∈ (0.01, 3.00), we observe an approximate loss of 8%
for the microlensed signals (refer to the first column, third row). However, this fraction is
dependent on our chosen parameter space and does not fully capture the impact on poten-
tially identifiable signals. Therefore, we further estimate the fractional loss for events that
satisfy specific conditions: (i) log10 BML

UL > 3 log10(e) (referred to as N1; column 2), and
(ii) log10 BML

UL > 9 log10(e) (referred to as N2; column 3). We find that the fractional loss
of events in case (i) is ∼ 20%, while for case (ii) it increases to about 29%. It is expected
that the fractional loss would increase with higher threshold values on Bayes factors, as
the greater the microlensing effects, the more significant the loss in their SNR during the
search process. Moreover, considering that real searches utilize template banks that dis-
cretely cover the parameter space, typically constructed with a maximum loss threshold
of 3%, there is an additional loss of such microlensed signals during the search process.
Specifically, for case (i) and case (ii), we find that the total fractional losses can reach up to
27% and 35%, respectively. This observation suggests that neglecting the loss of microlensed

9This value differs from the quoted value of 0.8 in The LIGO Scientific Collaboration et al. (2023a) as it
has been recomputed by the authors using the GWMAT framework (Mishra, A., in prep.).
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Figure 3.13: Comparison between the 1− σ regions of the posteriors for the microlensed
parameters of event GW200208_130117 (highlighted in red) and the predicted 1 − σ re-
gion of the low-confidence microlensed population derived from our population study
(highlighted in blue). Additionally, the 1 − σ contour for the predicted high-confidence
microlensed population is shown for reference (marked with a black dotted line).

signals during the search process (e.g., Basak et al. 2022) may impose an over-constraint on
the fraction of compact dark matter based on the non-detection of microlensed GW signals.
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Figure 3.14: Statistical 1-σ relative uncertainties in themeasurement of the redshifted lens
mass∆MLz/MLz (top panel) and impact parameter∆y/y (bottom panel) in the (MLz, y)

plane for a point lens. The white and blue lines lines correspond to 10% and 100% rel-
ative errors. In the white regions, the relative errors are larger than 100%. The system
comprises GW150914-like signals with added microlensing effects. The SNR is kept fixed
to 50 in the detector network of Hanford, Livingston and Virgo using projected O4 sensi-
tivities.

3.6 Statistical Uncertainties in the measurement of lensing
parameters using Fisher Analysis

In this section, we will estimate the statistical uncertainties in the inference of lensing
parameters of a point-lens, namely the redshifted lensmassMLz and the impact parameter
y, using Fisher analysis (see Sect. 2.3.5).

We compute the statistical uncertainties inMLz and y in the lensing parameter space
spanning log10MLz ∈ (0, 5)M⊙ and y ∈ (0.01, 3). We introduce microlensing effects to
a GW150914-like system with no spins and adjust the luminosity distance to maintain an
optimal network SNR of 50 across the Hanford, Livingston, and Virgo detector network,
using projected O4 PSDs (Abbott et al. 2018). To compute the covariancematrix, we utilize
the publicly available package GWBENCH (Borhanian 2021). To ensure a well-conditioned
Fisher matrix, we only vary the parameters Θ = {M, η, a1, a2, log10MLz, ln y}. We
employ the IMRPhenomXPHMWF approximant with lower and upper frequency cutoffs set
at 20Hz and 1024 Hz, respectively, with a bin size of 2−4 Hz, which is adequate for the
signal's duration in this context.

The results are shown in Fig. 3.14, where we plot the statistical relative uncertain-
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Figure 3.15: Comparison of the relative 1-σ uncertainties in the (log) redshifted lens mass
log10MLz and y. The relative uncertainties in the measurement of log10MLz are almost
always less than that in y.

ties in the measurement of the redshifted lens mass ∆MLz/MLz (top panel) and impact
parameter∆y/y (bottom panel) in the (MLz, y) plane for a point lens. The white and blue
lines correspond to 10% and 100% relative errors, respectively. The relative errors in the
white regions are larger than 100%.

Firstly, if we focus on the geometrical-optics regime in Fig. 3.14 (top-right corner; see
Fig. 2.2 for reference), we observe mostly similar trends between ∆MLz/MLz and ∆y/y.
Notably, in the top-right corner of both panels, we observe that the relative uncertainties
become independent of variation in the lens mass, i.e., they become constant for a given
y value (see, for example, the white contour lines in the top-right corner.). Similarly,
we observe that as we decrease y below ∼ 0.5 keeping log10MLz to be high ≳ 3, the
uncertainties increase drastically and can even exceed 100% for low y < 0.1. This is
because in the geometrical-optics regime, the uncertainties in both the parameters depend
only on y and the SNR of the signal. As we go away from y = 1, the uncertainties increase.
For y ≫ 1, they are proportional to, roughly, ∼ √

y, while for low y ≪ 1, they increase
as, roughly,

√
1/y. Since we have kept the SNR fixed, the uncertainties become roughly

constant for a given y value when lens mass is high log10MLz ≳ 3. These results are
consistent with Takahashi & Nakamura (2003), where a thorough investigation of relative
uncertainties in the geometrical-optics regime is illustrated. We note that although the
region in the bottom-right corner is not where geometrical optics is a good approximation,
the divergence in the uncertainties is still well-captured by the expression obtained for
that regime (Takahashi & Nakamura 2003).

In the long-wavelength regime (mainly bottom-left region; see Fig. 2.2 for reference),
where the microlensing effects are weak, we notice that the uncertainties in y are much
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larger than those inMLz. This is explained by the fact that in this regime, the modulations
are proportional to the dimensionless frequency ω = 8πGMLzf/c

3 in the leading order
(Tambalo et al. 2023). Hence, the estimation ofMLz is better than that of y, which leads to
the fact that for a given MLz in this regime, y is only poorly constrained leading to high
relative errors.

Lastly, in Fig. 3.15, we plot the ratio of relative uncertainties in the measurement
of log10MLz and y for comparison. We notice that in the parameter space of interest,
log10MLz is almost always better measured than y, owing to the majority of region having
a value less than unity.

3.7 Discussion and Conclusion

In this chapter, we primarily examine the impact of microlensing caused by isolated mi-
crolenses on GW signals. We begin by illustrating how the time delay between microim-
ages divides the microlens parameter space into three distinct regions. Next, we investi-
gate howmicrolensing can significantly influence the observed SNR,match, and FF values.
Subsequently, we analyze the microlensing-induced bias in the observed GW source pa-
rameters. Furthermore, we explore the statistical properties of microlensed GW signals
and estimate the fraction of missed GW signals if we employ unlensed templates in the
search. The distribution of Bayes factors for the population reveals certain regions in
the microlensing parameter space that are more likely to be correctly identified as mi-
crolensed signals. Finally, we examine more complex and realistic scenarios involving
the interaction of strongly lensed GW signals with a population of microlenses residing
within lensing galaxies and study their effect on posterior overlap analysis.

Based on our analysis, the results are as follows:

1. Employing unlensed WFs to search for microlensed GW signals can significantly de-
crease the FF, reaching as low as ∼ 70%. The FF values decrease as we increase (de-
crease) the value ofMLz (y). Consequently, the observed SNR also decreases. However,
microlensing itself amplifies the signal and can significantly increase the SNR, with val-
ues exceeding 10 times higher in extreme cases. This behaviour overall increases the
detector horizon and can even allow us to detect GW signals from high redshifts z ≳ 2,
beyond the peak of the star-formation rate.

2. The correlation study reveals a strong correlation between the microlens parameters
and the luminosity distance. Specifically, the parameter y exhibits a significant anti-
correlation with the distance, reaching values exceeding 90% in certain cases. More-
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over, we observe that the correlations between the microlens parameters and GW sig-
nal parameters are generally opposite in nature. For instance, a positive correlation
of MLz with a GW signal parameter often implies an anti-correlation of y with the
same parameter. Recovering microlensed GW signals using an unlensed WF model
introduces strong degeneracies among the source parameters, particularly when the
microlensing effects are significant and slowly varying, such as in the bottom-right
corner of the long-wavelength regime (Fig. 2.2). These degeneracies exhibit a highly
nonlinear relationship with variations in the microlens parameters. In other words,
our analysis indicates that microlensing can lead to a rotation of the correlation among
different pairs of parameters.

3. Recovering microlensed GW signals with unlensed GW signals can lead to significant
bias in the estimated parameter values, particularly when the microlenses belong to
the wave-dominated zone, where fτd ∼ 1. Among intrinsic parameters, the in-plane
spin components, particularly the precession effective spin χp, are most affected, sug-
gesting a degeneracy between the effects of microlensing and the modulations arising
from spin-induced precession. The errors typically increase with longer signal dura-
tions (i.e., for lighter binaries) and can even exceed 90% for (MLz, y) = (102 M⊙, 1),
which is a modest representative of microlensing through an intermediate-mass-black-
hole (IMBH). This suggests that any signal showing signs of precession must also be
analysed for the presence of microlensing signatures to avoid any erroneous claims
regarding the presence of precession. However, vice-versa may not be true, i.e., it is
unlikely that the presence of precession can bias microlensing searches. This is be-
cause the parameter space of unlensed signals always falls within the subset of the
microlensed parameter space. Hence, unless significant WF systematics are involved
in inferring the precession of a signal, such biasing is not expected. In addition, other
intrinsic parameters related to binary component masses, chirp mass and mass ratio,
can also be significantly affected. Although their relative errors is mostly within 10%,
it can even exceed 50% when microlensing effects are strong. Moreover, KS-statistics
show higher sensitivity of the posterior distribution to microlensing effects compared
to the recovered best-fit values.

4. Among extrinsic parameters, the recoveries of luminosity distance are affected the
most. In contrast, the trigger time and the sky-position parameters, RA and Dec (α
and δ), are the best-recovered source parameters. This is expected since the localiza-
tion of GW sources is mainly based on the observed time delays between each pair of
interferometers and microlensing does not significantly affect them.

5. A population study of microlensed signals reveals that the fraction of potentially iden-
tifiable microlensed signals missed due to the use of usual unlensed templates during
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the search is around ϵML
UL ∈ (20%, 30%). Hence, neglecting the loss of microlensed sig-

nals during the search process (e.g., Basak et al. 2022) may impose an over-constraint
on the fraction of compact dark matter based on the non-detection of microlensed GW
signals. Furthermore, investigating the impact of selection bias on the distribution of
microlens parameters in the observed signals reveals a significant deviation of the PDF
of the impact parameter, p(y), at low values of y ≲ 0.1. Therefore, in contrast to the
commonly used lower limit of 0.1 in microlensing searches of real data (e.g., Abbott, R.
and others 2021; The LIGO Scientific Collaboration et al. 2023a), a value of y = 0.01 is
not as insignificant as previously thought. On the other hand, we only observe a mild
preference for lowerMLz (< 103 M⊙) compared to larger ones, which primarily arises
from the use of unlensed WFs in recovering microlensed signals.

6. A model comparison study highlights the challenges in confidently identifying mi-
crolensing by ≲ 100 M⊙ microlenses, especially with average SNR values of ∼ 12

(Schutz 2011), unless the impact parameter y is very low (i.e., y < 0.1). However,
for high SNR (∼ 50) events, even microlenses with masses MLz ≳ 20 M⊙ can be de-
tected (assuming a characteristic value of y = 1). On the other hand, microlensing
signatures for an event with (MLz, y) = (102 M⊙, 1) is not detectable up to an SNR
value of around 25.

7. The Bayes factor analysis of our population of microlensed signals indicates certain
region in MLz − y parameter space have a higher probability of being detected and
accurately identified as microlensed. The analysis reveals that events identified as only
positively10 indicating microlensing would typically fall within the parameter space
(log10MLz, y) = (3.35+1.13

−0.93, 1.21+0.68
−0.51). On the other hand, events that are expected to

favour the microlensing hypothesis strongly would typically lie within the parameter
space (log10MLz, y) = (3.76+0.86

−0.88, 0.58+0.70
−0.37).

8. In the GWTC-3 catalog (Abbott et al. 2023), the most compelling candidate in the mi-
crolensing search thus far is the event GW200208_130117, which exhibited the highest
Bayes factor of log10 BML

UL ∼ 0.9 (The LIGO Scientific Collaboration et al. 2023a; Jan-
quart et al. 2023). The recovered values of the microlens parameters for this event,
including median values and 1-sigma errors, are (log10MLz, y) = (3.15+0.18

−0.21, 1.07+0.61
−0.32).

Interestingly, we note that this recovered value is remarkably close to our predicted
value of (log10MLz, y) = (3.35+1.13

−0.93, 1.21+0.68
−0.51) (see Fig. 3.13) for events that would

only positively support the microlensing hypothesis. Hence, based on our population
study, there is suggestive evidence in favour of the microlensing hypothesis for the

10We use the terms "positive" and "strong" to characterise the strength of evidence, in accordance with
the terminology used in Jeffreys' or Kass-Raftery's scale for interpreting Bayes Factor values (Deutsch 1999;
Kass & Raftery 1995).
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event GW200208_130117. However, it is important to acknowledge that further work
is required to confirm lensing with certainty, and the true nature of this event remains
inconclusive.

In summary, this extensive investigation across various sections sheds light on the
diverse effects of microlensing on GW signals. The findings contribute to our under-
standing of the detectability, parameter estimation biases, and population characteristics
associated with microlensed signals.

In future research, it is crucial to distinguish the effects of microlensing from other
physical effects, such as eccentricity, precession, tidal heating, etc., as microlensing has
the potential to alter themorphology of signals. Furthermore, it is important to investigate
whether these effects can lead to false triggers in various tests of general relativity (GR).
Additionally, there is a need to delve deeper into the impact of microlensing on strongly
lensed GWs and explore their implications for future searches.

54



Chapter 4

Beyond isolated point lens model:
Complex configurations of microlensing

Although an isolated point mass lens model offers many insights into the nature of mi-
crolensing and is helpful for pedagogical reasons, it may not be astrophysically viable. It
is highly unlikely that isolated compact objects would be roaming around freely in the
universe. However, a more realistic scenario is that of a compact object, or a population
of them, residing in a macro-potential (strong lens potential), such as lensing galaxies,
clusters, etc., which we now study in this chapter.

This chapter is mainly based on our understanding from the papers Mishra et al.
(2021), Meena et al. (2022), and (Mishra, A., in prep.).

4.1 Numerical Computation of the Amplification Factor

In a realistic scenario of strong lensing, the possibility of a GW signal encountering a
massive isolated point lens is much less relative to it encountering a microlens population.
Typically, microlensing of strongly lensed images happens due to the population of point
mass lenses instead of a single point mass lens. As a result, the time delay factor, td,
in Eq. 2.3 is modified and includes a contribution from the macromodel in terms of the
convergence and shear at the image position, and the population of microlenses near the
macroimage. The resultant potential then becomes ψ → ψtotal = ψSL +ψML, where ψSL is
the macromodel potential andψML is the lens potential due to the microlensing population
embedded in the macromodel. These contributions are given by (Suyu et al. 2024; Saha &
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Williams 2011)

ψML (xxx) =
∑

k

mk

M0

ln |xxx− xxxk|,

ψSL (xxx) =
κ

2

(
x21 + x22

)
+
γ1
2

(
x21 − x22

)
+ γ2x1x2,

(4.1)

wheremk andxxxk denote, respectively, the mass and position of the k-th point mass lens in
the population;M0 is an arbitrarymass value as defined in Eq. 2.4; κ and (γ1, γ2) represent,
respectively, the dimensionless surface mass density of the mass sheet of the lens plane
(or convergence) and the components of shear due to the presence of the macrolens. Here,
we assume constant κ and γ values since they are usually slowly varying functions of the
galactic plane coordinates1 The diffraction integral, Eq. 2.5, with the above lens potential,
containing population of microlenses, cannot be solved analytically, in which case one
has to use numerical methods (e.g., Ulmer & Goodman 1995; Diego et al. 2019), to obtain
an approximate solution.

Except for the most trivial lens models, like that of an isolated point mass, the Fer-
mat potential ψ(xxx) takes a complicated form, in which case no analytical form can be
derived straightforwardly. Furthermore, it is highly inefficient to numerically integrate
the diffraction integral, Eq. 2.5, because of the oscillatory nature of the integrand and the
fact that the direct calculation of F (f) is a three-dimensional problem in x1, x2 and f .
Hence, one needs to use a numerical method that is more efficient and resolves the prob-
lems mentioned above. Such numerical methods have been described in UG95 and D19.
In the current work, we follow the method of UG95 to calculate the magnification factor
that is described below in Sect. 4.1.1. Subsequently, we also demonstrate the validity of
our code for both minima and saddle points macroimages. In Sects. 4.1.2 and 4.1.3, we
consider microlensing for two elementary cases, namely, an isolated point mass lens and
a point lens situated near a minima-type macroimage in the presence of an external shear.
Generally, simulating amplification curves for saddle points is nontrivial, and we discuss
the issue separately in Sect. 4.1.4. We also describe our methodology to deal with saddle
points macroimages and perform numerical tests to verify our results for simple lensing
configurations.

4.1.1 Formalism

By using the methods of contour integration and Fourier transformation (F ), UG95 splits
the problem of calculating F (f) into two parts and reduces it into two dimensions as

1However, we note that the validity of this assumption near highly-magnified macroimages might break
down.
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described below. Firstly, we define Υ(ν) ≡ iF (ν)/ν, assuming yyy to be fixed. Then, we
have

F [Υ(ν)] ≡ F̃ (τ ′) =

∫
d2xxx

∫
dν exp (i2πν[τd(xxx)− τ ′])

⇒ F̃ (τ ′) =

∫
d2xxx δ[τd(xxx)− τ ′],

(4.2)

where τ ′ ≡ t/Ts. Now, using ν = Tsf and the fact that F−1[F̃ (τ ′)] = Υ(ν), we get

F (f) =
f

i

∫
dt exp (i2πft) F̃ (t), (4.3)

where t represents the time delay value relative to an arbitrary reference time. For a
minima-type macroimage, it is usually measured relative to the global minimum of the
time delay surface, whichmarks the arrival of the first microimage. Whereas formacroim-
ages at saddle points, we measure t relative to the arrival of the dominant saddle image
(discussed in Sect. 4.1.4). Also, since we will have a finite range of F̃ (t) values in actual
computation, we would need to further use an apodization function in Eq. 4.3 that re-
moves the erroneous contribution from the edges. Otherwise, the computed values for
both |F | and θF would be significantly inaccurate and will show oscillatory behaviour
at lower frequencies. In our analysis, we have used a cosine window function (e.g., see
D19) that removes these irregularities and produces an excellent output, as discussed in
the next subsections.

Equation 4.3 can then be evaluated as a contour integral. The area between the curves
defined by τd(xxx,yyy) = τ ′ and τd(xxx,yyy) = τ ′+dτ ′ isA = F̃ (τ ′)dτ ′ up to first order. This area
can also be evaluated as an integralA =

∮
dsdl, where ds is the infinitesimal length along

the contour and dl = dτ ′/|∇xxxτd| is the orthogonal distance between the two contours at
the point of evaluation. Moreover, there can be more than one such contour, in general.
Thus, by comparison of the areas evaluated using these two methods, we finally get

F̃ (τ ′) =
∑

k

∮
Ck

ds

|∇xxxτd|
. (4.4)

The summation is over all the contours, Ck, where τd(xxx,yyy) = τ ′. Thus, for a given time-
delay function (or lensing potential), we first compute F̃ (t) using Eq. 4.4 and then inverse
Fourier transform it back to get the required F (f), as in Eq. 4.3. Also, from Eq. 4.4, one
can see that F̃ (t) is a smooth function except at critical time ti where the images form,
i.e., where |∇xxxτd| = 0.2

2The reader is referred to the appendix of UG95 for further details.
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Figure 4.1: Test of numerical code shown for an isolated point lens of 100M⊙ at zd = 0.5

for a source at zs = 2. The analysis is done for four different values of the impact parame-
ter y = β/θ0 = {0.01, 0.1, 0.3, 1.0}. Left: The curves show numerically computed F̃ (t)
normalised by a factor of 2π so that its value approaches unity in the no−lens limit (large
time delays). Middle and Right: The curves show the comparison between the analytical
and the numerically computed frequency-dependent amplification factor F (f) = |F |eiθF .
The solid coloured curves have been numerically obtained from the F̃ (t) curves using
Eq. 4.3, whereas the dotted black curves denote analytical results (see Eq. 2.8).

4.1.2 Testing Numerical Code: Isolated Point lens

Since we have the analytic form of F (f) for an isolated point mass lens, Eq. 2.8, it can be
used as an initial testing ground for our numerical code based on the above formalism.
Hence, in this subsection, we compare F (f) generated via two independent methods: an-
alytical and numerical. We consider a 100 M⊙ point mass lens placed at a lens redshift
zd = 0.5, and a GW source placed at zs = 2. The analysis has been done for four dif-
ferent non-zero source positions: y = β/θ0 ∈ {0.01, 0.1, 0.3, 1.0}. In the case of a
point mass lens, two images of opposite parities are always formed, where positive and
negative parities correspond to the minimum and the saddle point of the time-delay sur-
face, respectively. The magnification of each image and the (dimensionless) time delay
between them is given by

µ± =
1

2
± y2 + 2

2y
√
y2 + 4

, ∆τd =
y
√
y2 + 4

2
+ ln

(√
y2 + 4 + y√
y2 + 4− y

)
. (4.5)

In the left panel of Fig. 4.1, we show the normalised F̃ (t) curves, computed using
Eq. 4.4, for different source positions. The x-axis represents the time delay measured with
respect to the global minimum (situated at t = 0). Since we are interested in the LIGO
frequency range of 10−104 Hz, we need to compute F̃ (t)within the range∼ 10−6−1 sec
such that we cover the region where ftd ≲ 1. So, we generate F̃ (t) values for a suffi-
cient number of time-points within this interval and interpolate between them using the
Hermite interpolation method to obtain a continuous function F̃ (t), which can be easily
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inverse Fourier transformed to obtain F (f) using Eq. 4.3. The F̃ (t) curves shown are
normalised such that their value approaches one in the no-lens limit (large time delays).
Since the time delay surface approaches a paraboloid at large values, this normalization is
done by dividing the obtained curves by 2π (since Eq. 4.4 yields 2π in the no-lens limit, i.e.,
for circular contours). In this way, the curves start from a value corresponding to the am-
plification of the image formed at the minimum, i.e.,

√
µ+, and eventually approach unity

at large time delay values. Between these two expected behaviours, it encounters a log-
arithmic divergence corresponding to the saddle point (image with negative parity). The
time delay at the point of this divergence is the time delay between the two images (since
the first image occurs at t = 0). As expected, we can see that this time delay between the
images decreases as we move towards the lens (eventually becoming zero when y = 0)
while the amplitude of the logarithmic pulse increases, increasing the magnification of
the saddle point image.

In the middle and right panels of Fig. 4.1, we show the comparison between the an-
alytical results (obtained using Eq. 2.8) and the numerical results for the computation of
the amplification factor F (f)=|F | exp(iθF ). The black-dotted lines represent the |F (f)|
and θF calculated using the analytical formula given by Eq. 2.8, respectively. The differ-
ent solid-coloured lines represent the |F (f)| and θF values, which have been computed
numerically using our code. For the numerical computation, we first generate F̃ (t) values
using Eq. 4.4 and substitute it in Eq. 4.3 along with a cosine window function (because of
the finite range of F̃ (t)). As previously mentioned, without this anodization, the com-
puted F (f) values will show oscillatory behaviour, especially below 100 Hz.

As one can see from Fig. 4.1, the agreement between analytical and numerical val-
ues is excellent. In all cases, the factor |F | approaches unity and the phase factor θF
approaches zero as we go lower in the frequency (f ≪ t−1), which means that the lens is
invisible for signals with large wavelengths compared to the Schwarzschild radius of the
lens (λ ≫ Rs0). The wave effects start to appear when λ ∼ Rs0 (ft ∼ 1), which causes
modulation in the amplification factor. As the frequency increases (λ ≪ Rs0), wave op-
tics approaches ray optics, i.e., F (f) oscillates rapidly about its geometric optics limit and
the average magnification over a frequency range becomes independent of the frequency
(as in strong lensing). In the frequency range shown in the figure, only the blue curve
(y = 1.0) has been able to approach the ray optics limit approximately. In general, for a
point lens, the average values of |F | and θF at high frequencies approach

√
µ+ and zero,

respectively, in accordance with 2.7. We notice that our numerical code recovers all the
features mentioned for F̃ (t) and F (f) very well.
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Figure 4.2: Test of numerical code shown for a point massmicrolens of 100M⊙ at zd = 0.5

in the presence of shear. The source is kept at zs = 2 and the source position is fixed
to (y1, y2) = 0.4(cos(π/8), sin(π/8)). The analysis is done for three different values of
the shear γ = {−0.2,−0.5,−0.8}. Left: The curves show numerically computed F̃ (t)
(using Eq. 4.4) normalised by a factor of 2π, which ensures that they approach their no-
microlens (strong lensing) limit,

√
µ = (1−γ2)−1/2, at large time-delay values. Middle and

Right: The curves show the comparison between the numerical and the direct evaluation
methods for computing the frequency-dependent amplification factor F (f) = |F |eiθF .
The solid coloured curves have been numerically obtained from the F̃ (t) curves using
Eq. 4.3, while the dotted black curves are obtained via direct (numerical) integration of
Eq. 2.5.

4.1.3 Testing Numerical Code: Type-I (Minima) Macroimages

In this subsection, we test our code for a slightly complicated case where we place a
point lens of 100M⊙ close to a minima-type macroimage of a source in the presence of
an external shear (γ) with no convergence (κ = 0). Without loss of generality, one can
always choose the principle direction of the shear to be horizontally aligned, in which
case γ2 = 0, |γ| =

√
γ21 + γ22 = |γ1|. Also, we place the macroimage at the origin of

the source plane coordinates, i.e., at yyy = (0, 0). Unless stated otherwise, we adopt this
reference frame throughout our analysis. Now, in this case, the effective lens potential in
Eq. 2.3 can be written as

ψtotal = ln
(√

x21 + x22

)
+
γ

2

(
x21 − x22

)
. (4.6)

For the potential written above, we do not have an analytic solution for the diffraction
integral, unlike in the case of a point mass lens. Therefore, to perform the numerical test
for this case, we directly evaluate the double integral in Eq. 2.5 numerically and compare
it with the one obtained via our code. However, the direct evaluation is slow and does not
work well for higher frequencies where the integrand becomes too oscillatory.

For the computation of the amplification factor, the comparison between the di-
rect numerical evaluation (dotted-black lines) and the one obtained via our code (solid-
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coloured lines) is shown in the middle and right panel of Fig. 4.2. The analysis has been
done for three different values of shear, γ={−0.2, −0.5, −0.8}, keeping the source posi-
tion fixed at (y1, y2) = 0.4(cos(π/8), sin(π/8)). Again, we observe that there is excellent
agreement between direct numerical integration and the adopted numerical method of
UG95. Also, the amplification curves approach the strong lensing amplification value for
low-frequency values (no−microlensing limit) and the phase shift curves approach zero,
as expected.

The corresponding calculations of F̃ (t) are shown in the left panel of Fig. 4.2. We
have again normalised the plots by dividing the originally obtained ones by a factor of 2π.
This normalization ensures that the curves approach to value

√
µ = (1− γ2)−1/2 in their

no−microlensing (strong lensing) limit at large time delays. The time delay function, in
this case, includes four stationary points, at least two of which are always real. In the
F̃ (t) plots in Fig. 4.2, we observe that two microimages form in the case of γ = −0.2

(blue curve). One of these corresponds to the global minima (discontinuity at t = 0), and
the other is for the saddle point (logarithmic peak at t ∼ 2.5 ms). The other two values
of the shear lead to a four-microimage geometry (orange and magenta curves). These
microimages correspond to the two minima at a low time delay (two discontinuities) and
the two saddle points at a higher time delay (two logarithmic peaks).

The direct evaluation of the diffraction integral (Eq. 2.5), adopted here for comparison
with our code, cannot be used in the case of a microlens population (or for any nontrivial
potential), as it becomes highly inefficient and does not performwell at higher frequencies
because of the oscillatory integrand. Hence, this method can not be used further, and we
solely rely on the method by UG95 to compute the amplification factor F (f), using our
code, throughout our analysis in the paper.

4.1.4 Testing Numerical Code: Type-II (Saddle) Macroimages

In this subsection, we describe the numerical scheme that is used to compute the am-
plification factor for a saddle point image. Unlike in the case of minima, here, the time
delay contours neither close locally nor have a global minimum, as they are hyperbolic
in nature rather than elliptical. However, if one chooses a sufficiently large region, the
contribution from the neighbourhood of a saddle point is given by

F̃ (t) = −2
√

|µ−| log |t− ti|+ non-singular part + constant (4.7)

where ti and µ− denote the time delay and magnification value corresponding to the sad-
dle point, respectively, and the constant depends on the size of the region. By sufficiently
large, we mean the size of the region should be such that |u−2µ−|−1/2 ≫ 1 near the
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Figure 4.3: Test of our numerical code for the case of microlensing of a saddle point
macroimage of a source at zs = 2. The analysis is shown for two cases, with and with-
out the presence of a 100 M⊙ microlens at zd = 0.5. Left: The curves show numerically
computed F̃ (t) obtained using Eq. 4.4. The presence of microlens, in this case, leads to
a four-microimage configuration (see orange curve in the inset of the leftmost panel).
Middle and Right: The curves show the comparison between the numerical and the an-
alytical computation of F (f) = |F |eiθF in the geometrical optics limit (ftd ≫ 1). The
solid coloured curves have been numerically obtained from the F̃ (t) curves using Eq. 4.3,
while the dotted black curves are obtained using Eq. 2.7. For the no microlens case, the
geometric optics limit is equivalent to the strong lens limit (ftd ≪ 1), while in general,
the geometrical optics limit is reached at high frequencies ≳ 104 Hz where the F (f) and
F (f)

∣∣
geo match (see dotted black and orange curves).

boundary, where u denotes the arc parameter of the contour (the reader is referred to
Appendix B of UG95 for further details). The presence of a constant does not affect the
computation of F (f), especially when the integration range is chosen carefully, such that
Re
{∫

dt ei2πft
}
= 0, and at higher frequencies where Im

{∫
dt ei2πft

}
≪ 1.

When a saddle point macroimage splits into microimages, there will always be a
dominant saddle microimage which will dominate F̃ (t) and F (f). In our simulation, we
first find this image and measure the time delay values relative to this image, i.e., we fix
the arrival time of the dominant saddle image at t = 0 (this arbitrary value is chosen for
simplicity). Given a time delay function corresponding to a saddle point macroimage, one
can find the location of the dominant saddle image numerically by iteratively computing
the minima along the coordinate direction with increasing curvature and maxima along
the coordinate direction with decreasing curvature. We then compute F̃ (t) values sym-
metrically about t = 0 and inverse Fourier transform it to get the required amplification
factor values F (f). A time range of O(2) s is sufficient for most cases since only the
region closer to the divergence would mainly contribute. This is due to the fact that the
contribution of the nearly flat part of F̃ (t) in the inverse Fourier transform will mostly be
averaged out.

We test our numerical recipe for two cases, namely, in the absence of microlens and
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in the presence of a 100 M⊙ microlens leading to a four−microimage configuration. For
both cases, we fix ourmacro-magnification value to µ = −2.4. In the case of nomicrolens,
one expects to recover strong lensing values for the amplification factor, i.e., |F | =

√
|µ|

and θF = −π/2, since there will be no interference in the absence of microlenses. We
indeed recover these values as shown in the middle and right panel of Fig. 4.3, where
|F | =

√
2.4 and θF = −π/2 (the Morse phase shift of saddle-type macroimages). The

dotted black curve represents the geometrical optics limit, which, in this case, is equivalent
to the strong lensing value, while the blue curve represents the F (f) values as obtained
through the code numerically.

In the presence of a 100 M⊙ microlens, we keep the source inside the caustic to get
a four−microimage geometry. The time delay and magnification of these microimages
are
(

t
10−5s , µ

)
∈ {(−6.68, 11.98), (−4.73,−3.76), (2.73,−2.63), (0.,−8.00)}. These

microimages correspond to the discontinuity and spikes in the F̃ (t) as shown in the left
panel of Fig. 4.3. Using Eq. 2.7, one can then find the F (f) in the geometrical optics
limit (ftd ≫ 1) and then compare it with the computed F (f) at high frequencies. The
comparison is shown in the middle and right panel of Fig. 4.3, where the dotted black
curve represents the geometrical optics limit of F (f) obtained using Eq. 2.7 and the solid
orange curve shows the numerically computed F (f) using the F̃ (t) curve as shown in
Fig. 4.3.

As we can see, for both cases, the numerically computed F (f) and the expected
geometrical optics limit values are in excellent agreement. Furthermore, in Fig. 4.3, the
F̃ (t) curves in both cases contain a dominant logarithmic divergence at t = 0 (the arrival
time of the dominant saddle image) and is roughly symmetric around it, as expected. The
difference in F (f) below ≲ 104 Hz is mainly due to the diffraction effects and clearly
demonstrates why one needs to incorporate wave optics in such cases.

4.2 Single Microlens Embedded in a Macrolens

In this section, we will focus on some realistic configurations of microlensing where a
point mass lens is embedded in a macrolens. As we discussed in the previous section,
microlensing due to an isolated pointmass lens entails interference patterns of two (micro-
)images. However, when they are embedded in macrolens, it can even lead up to four
images, or the microimages can be amplified because of macro-magnification. Therefore,
the interference effects in the presence of macrolens can be severely affected. We will
mainly focus on the impact of the macrolens on the microlensing effects.

As we saw in Sect. 2.2.1, the amplification factor in the case of an isolated point mass
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(a) Variation of F (f) with convergence κ.

(b) Variation of F (f) with the shear direction ϕ.

(c) Variation of F (f) with shear value γ with a focus on quadruply-imaged systems.

Figure 4.4: Illustration of how microlensing can vary with varying convergence (κ),
shear (γ), and the direction of shear (ϕ) by numerically computing the amplification fac-
tor F (f) for the time-delay function given in Eq. 4.8. We fix the parameters {MLz =

150 M⊙, y = 1}, where we set the redshifts as {zd = 0.5, zs = 2.0}, for all the
three cases, and vary the rest three in the three subplots. Top panel: variation of F (f)
with κ, where we fix the other two parameters as {γ = 0, ϕ = π/2}, and vary
κ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Middle panel: variation of F (f)
with the angle ϕ between the shear direction and the source relative to the lens. Here, we
fix {κ = γ = 0.3}. Bottom panel: variation of F (f) with shear value γ with a focus on
quadruply-imaged systems. Here, we set κ = 0 and set ϕ = π/2.

lens depends only on two parameters: the redshifted lens mass MLz and the impact pa-
rameter y. However, in the presence of a macrolens, it becomes a 5-dimensional problem,
depending upon the parameters: {MLz, yyy, κ, γ}. The source vector needs to be consid-

64



CHAPTER 4. BEYOND ISOLATED POINT LENS MODEL: COMPLEX CONFIGURATIONS
OF MICROLENSING

ered instead of just the impact parameter because its relative orientation relative to the
shear direction (when γ is non-zero) can give different result even for the same y. We can
split yyy ≡ {y1, y2} or yyy ≡ y{cosϕ, sinϕ}, where ϕ is the angle between the shear direc-
tion and the source relative to the lens. The time-delay function in case of a microlens
embedded in a macrolens can be written as:

τ(xxx,yyy) =
2GMLz

c3
[
(x1 − y1)

2 + (x2 − y2)
2 − κ(x21 + x22)− γ(x21 − x22)− ln

(
x21 + x22

)]
,

(4.8)
where we set our origin on the microlens and assume the shear direction to be along x2.

In Fig. 4.4, we show how microlensing can vary with varying convergence, shear,
and the direction of shear by numerically computing the amplification factor for the
above time-delay function. For this exercise, we permanently fix two of the five param-
eters with {MLz = 150 M⊙, y = 1}, where we set the redshifts as {zd = 0.5, zs =

2.0}. We study the effect of varying the other three parameters in the three subplots
in Fig. 4.4. Particularly, in Fig. 4.4a, we study the variation with the convergence κ.
For this, we further fix the other two parameters as {γ = 0, ϕ = π/2}, and vary
κ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Since amplification, in this case, is
√
µ = (1 − κ)−1, we see that with increasing κ, the F̃ (t) takes higher and higher values

at large time delays (≳ 1 s) in accordance with the
√
µ value (which is equivalent to the

values towards which |F (f)| converges to at lower frequencies). More importantly, we
notice that with increasing κ, the time delay between the two microimages for a given
case also increases (the rightward shift in the logarithmic peaks of F̃ (t)). This leads to a
relatively earlier onset of modulations. For example, if we observe the trend in the middle
and right panel showcasing F (f) values, we notice that the modulations start at lower
and lower frequencies as κ increases (e.g., observe the first trough and crest of each curve).
Moreover, we notice that the amplification at low time-delay values (≲ 10−6 s) also in-
creases with increasing κ. Since this amplification is directly related to the amplification
of the minima type microimage (

√
µ+), we infer that

√
µ+ also increases with increasing κ

in this case. Thus, the effect of increasing convergence is increasing the effective mass of
the microlens in addition to amplifying the microimages themselves, thereby increasing
the microlensing effects. However, we note that the effect of microlensing on a given GW
signal may not be this monotonic, as it might be dependent on the GW source parameters
themselves. So in this section, when we say pronounced microlensing effects, we primar-
ily mean enhanced interference effects. We will quantify the effect of such microlensing
scenarios on GWs in the subsequent sections.

Next, in Fig. 4.4b, we vary the angle ϕ between the shear direction and the source
relative to the lens. For this study, we fix {κ = γ = 0.3}. Since ϕ does not affect the
strong lensing magnification, it is fixed to µ = 2.5. Here, ϕ = 0 means in the direction
of shear and ϕ = π/2 orthogonal to it. We mainly focus on the first quadrant and vary ϕ
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between 0 and π/2 to take values ϕ ∈ {0, π/12, π/6, π/4, π/3, 5π/12, π/2}. We notice
that the time delay between the microimages (logarithmic peaks in F̃ (t) curves) decreases
as ϕ increases away from 0, with maximum for from ϕ = 0 and the least for ϕ = π/2,
by a factor of more than twice. However, observing the low time-delay values of F̃ (t),
we notice

√
µ+ to be increasing with increasing ϕ. Meanwhile, noticing the logarithmic

peaks, we find
√
µ− to be decreasing with increasing ϕ. Since the critical curve divides

images with different multiplicity, these behaviours tell us that when the source is placed
in the direction of shear, the minima image forms farthest from the critical curve when
ϕ = 0 compared to other values while the saddle-point image forms closest to it. This is
reversed as the source is orthogonal to the shear direction.

Lastly, in 4.4c, we focus on some microlensing scenarios involving quadruply-lensed
systems. Here, we set κ = 0 and set ϕ = π/2. It is possible to obtain four images
from a single-point lens when significant shear is present. This is because the spherical
symmetry of the lens is broken in the presence of shear, unlike in the case when only the
convergence is present. Therefore, shear is necessary and sufficient for the formation of
four images in the case of a point lens. Of these four images usually come, the first two
images that arrive are usually minima type, while the other two are saddle-point type. It
can be seen from the structure of F̃ (t) curves, which carry two discontinuities at low time
delays followed by the two logarithmic peaks. As we can see, the interference patterns
from these four microimages can be more complicated than in the case of interference
from two microimages (doubly-lensed systems). For example, in the case of interference
from twomicroimages, we usually see a simple pattern of troughs and crests. However, in
the case of four microimages interfering, we see some additional features within a single
crest and trough, which depends on the time delay between the microimages and their
magnification.

4.3 Effect ofmicrolens population present in lensing galax-
ies on strongly lensed GWs

4.3.1 Methodology

When a GW signal is strongly lensed by an intervening lensing galaxy or a galaxy cluster,
it can interact with the microlenses present in the lens. These microlenses may consist of
stars, stellar remnants (white dwarf, neutron star and black hole) and possible compact
dark matter objects like primordial black holes (PBH; e.g., Bird et al. 2016). The inter-
action between GWs and these microlenses can lead to the emergence of wave effects
where frequency-dependent modulations can lead to observable signatures in the GW
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signal. In this section, we investigate such scenarios of microlensing due to the presence
of microlens population in lensing galaxies.

We assume our lens to be an isolated elliptical galaxy and model the smooth matter
fraction with a singular isothermal ellipsoid (SIE) density profile. Once we obtain the
strong lens systems, the next step is to determine the microlens density at the position
of the strongly lensed images. In this work, we assume that all of the dark matter is
in the form of a smooth component, leaving only stars and stellar remnants as possible
microlenses. That is, we assume the total convergence value (κ or the dimensionless
surface mass density of the mass sheet of the lens plane) can be broken into smooth and
compact components:

κ = κs + κ∗ (4.9)

where κ∗ constitutes both stars and stellar remnants. To determine the effect of a mi-
crolens population present at the location of a macroimage, we then follow these 4 steps:

i. Generating a stellar population using an initial mass function (IMF). The process
that forms stars out of molecular clouds produces objects over a wide range of
masses, with an abundance peak of around 0.2M⊙ (e.g., Chabrier 2003;Maschberger
2013). Particularly, we use the Chabrier IMF with the mass range 0.01 M⊙ to
300 M⊙.

ii. Next, we evolve this stellar population for an assumed time frame (between two red-
shifts). We consider a time period of ∼ 5 Gyr stars. This evolution turns stars with
masses≳ 1.2M⊙ into remnants (Paxton et al. 2011), and we make use of the initial-
final mass relation from the Binary Population And Spectral Synthesis (BPASS, El-
dridge et al. 2017) to infer the final mass of the evolved stars. Meanwhile, we assume
the mass profile of the lower mass stars (< 1.2 M⊙) is kept unchanged.

iii. To estimate the projected stellar surface mass density at the image positions, we use
the Sérsic profile (see equation 8 in Vernardos 2019). The total fraction of the mass
in the mass rangem ∈(0.01, 0.08) M⊙ is around 5%. This mass range predominantly
affects the frequencies above the higher end of the LIGO frequency range and the
relative error due to the removal of this mass range is about ∼ O(1)% in the F (f)
curve for typical strong lensing amplification values. As a result, for computational
efficiency, we remove the microlenses below 0.08 M⊙ from our population.

iv. We then generate the population following the mass profile obtained in the above
steps. We consider a patch area that encapsulates the contour corresponding to a
time delay of at least td = 1 s, which ensures our results are correct from 10 Hz
onwards. These microlenses are then randomly distributed in the patch, after which
amplification factor computation is performed.
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In Fig. 4.5, we showcase the typical distribution of microlens density (Σ•) and the
corresponding (unsigned) macro-magnification (|µ|) for a population of strong lens sys-
tems obtained from a realistically generated mock sample from More & More (2022). For
illustration, we only consider quad systems, where the lens leads to the formation of four
images, and the detector sensitivity assumed is that of projected O4 sensitivity. The black,
yellow, red, and blue points represent the image-1,2,3,4 of the quad systems, where the
numbering is done based on their order of arrival times, i.e., image-1 arrives first followed
by image-2 and so on. In a typical quad system, it is expected that the first two images
that arrive, i.e., image-1,2, are of minima-type (type-I), and the latter two correspond to
the saddle-point (type-II). Following the terminology in Meena et al. (2022), we note that
the distribution of images in the |µ| − Σ• plane in Fig. 4.5 leads to a butterfly shape. We
also note that this shape is not expected to be dependent on the sensitivity of the detec-
tors since it is expected that, in a given quad system, image-2,3 will be more magnified
than image-1,4 and that image-4 will be formed where microlens density is high as they
typically lie closest to the lens centre, while image-1 will have the least microlens density
as it forms farthest from the lens. Specifically, it is worth noting that the magnification
for minima images (image-1 and image-2) always have |µ| > 1 whereas the saddle points
in addition can also have |µ| < 1. Apart from that, the microlens densities for image-1,
2, 3, 4 are in increasing order as the saddle points form closer to the centre of the lens
galaxy in regions of high densities as compared to the minima. As we can notice, the
typical densities are of the order O(102) M⊙/pc2 (e.g., see the 1-sigma region of p(Σ•)).
This can also be understood from the fact that the typical mass of a galaxy in stars is
around O(1010) M⊙ while the size of a galaxy is of the order O(104) pc. Thus, the aver-
age surface density comes out to beO(102)M⊙/pc2. Meanwhile, the observed median of
the distribution of |µ| is around |µ| ≈ 4.1. This is an overestimation of the true median
because of the selection bias, i.e., images that are highly magnified are more likely to be
detected. Thus, due to these selection biases, |µ| should decrease and tend towards the
true median as the sensitivity of the detector increases. For example, the median for a
third-generation detector is around |µ| ≈ 2.5. Also, it is worth noting that because GW
sources are point-like sources, they can achieve very high magnifications (|µ| > 100) in
principle.

Using Equations 2.3 and 4.1, the time delay function in the case of a population of
microlens can be written as (Suyu et al. 2024; Saha & Williams 2011; Zheng et al. 2022;
Shan et al. 2023b):

td(xxx, yyy = O, λλλlens) =
2GM0(1 + zd)

c3

[{
x21(1− κ− γ) + x22(1− κ+ γ)

}
−{ N∗∑

i=1

mi

M0

ln |xxx− xxxi|2 + ϕ−κ∗

}]
,

(4.10)
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Figure 4.5: Distribution of images formed in quad lens systems in the parameter space
of macro-magnification (|µ|) and microlens density (Σ). The black, yellow, red, and blue
points represent the image-1 (minima), image-2 (minima), image-3 (saddle points) and
image-4 (saddle points), which are ordered according to their time delay values relative
to the image-1. The histograms at the top and on the right represent probability density
functions for the magnifications p(|µ|) and microlens density p(Σ•), respectively, for all
four images combined. The quad-lensed systems are obtained from a realistically gener-
ated mock sample from More & More (2022) assuming projected O4 detector sensitivity.

where λλλlens denotes the lens parameters given by λλλlens ∈ {κ, γ, xxxi, mi} and the coordi-
nate originO has been set at the macro image point (i.e., y = 0). The term within the first
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set of curly brackets represents the combined effect from strong lensing due to the local
convergence (κ), originating from both compact and smooth mass, and the shear (γ). The
term within the second set of curly brackets quantifies the contribution from the N∗ in-
dividual microlenses, whose mean surface mass density is ∗. Since microlenses are added
on top of total convergence, we add a negative mass sheet ϕ−κ∗ that contains only the
smooth matter with the same κ∗ to cancel out the ``extra mass". This term ϕ−κ∗ depends
also on the shape of the patch. We always take a rectangular patch in this work as it is
computationally more efficient and avoids incorporating unnecessarymicrolenses (Zheng
et al. 2022). The expression within the second set of curly brackets can be regarded as the
perturbation caused by compact objects, i.e., the effect of the microlens population that
we wish to study.

4.3.2 Studying effect ofmicrolens population on type-I and type-IImacroim-
ages

To demonstrate the effect of microlens population present in lensing galaxies on GWs, we
consider an SIE lens kept at a redshift zd=0.5 with a velocity dispersion (σvd) of 230 km s−1

(taken as a rough mean σvd from lens sample of Sonnenfeld et al. 2013). Since minima and
saddle points are themost common types of lensed images seen in galaxy−scale lenses, we
consider the microlensing effects for these two images in our analyses. For an SIE lens, the
values of κ and γ due to the macrolens at the position of lensed images are equal to each
other, i.e., |κ| = |γ| (e.g., Vernardos 2019). For illustration, we consider a sufficiently wide
range of (

√
µ,Σ•)i, where i ∈ (I, II) in the subscript denotes the image type. For minima

(saddle points), we consider five (two) different cases of (
√
µ,Σ•)i, which are listed in

the Table 4.1. We then compute amplification factors for these systems for 30 different
realizations of microlens populations and their distribution around the macroimage. The
results are plotted in Figs. 4.6 and 4.7.

In Fig. 4.6, we showcase the results for minima macroimages. Different rows cor-
respond to different cases of macro-amplification

√
µ and microlens-density Σ• values,

as labelled in the first column of each row. Furthermore, each row has four columns
where the leftmost column shows the F̃ (t) curves. The second and third columns display
the absolute part (|F |) and the phase part (θF), respectively, of the amplification factor
resulting from the combined effects of strong lensing and microlensing. The fourth col-
umn illustrates the mismatch (see footnote 6) between the strongly lensed WF (hSL) and
the one with additional microlensing due to intervening microlens population (hSL+ML)
for various equal-mass binary systems where each line corresponds to a specific realisa-
tion as shown in the second and third columns. To save space, the labels for the y-axis
are placed at the top of each column. Focusing on the leftmost column, F̃ (t) curves, we
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Table 4.1: Lens parameter values for minima and saddle points used in simulations. The
(κ, γ) are the local convergence and shear values due to the (smooth) macrolens mass
distribution. The κ∗ is the local convergence due to the mass in compact objects. The µ
represents macro−magnification, and Σ• represents the surface microlens density.

κ γ κ∗
√
µ Σ• (M⊙ pc−2)

Minima (Type-I)
0.276 0.276 0.013 1.49 27
0.354 0.354 0.024 1.85 50
0.413 0.413 0.035 2.40 72
0.467 0.467 0.046 3.87 95
0.495 0.495 0.052 10.01 108

Saddle points (Type-II)
0.548 0.548 0.065 3.21 135
0.722 0.722 0.115 1.50 239

can see the appearance of many microimages in the form of discontinuities and logarith-
mic divergences. Consequently, the interference of these microimages leads to compli-
cated modulations, as can be seen in the F (f) = |F |eiθF plots in the second and third
columns. As discussed in Sect. 4.1, at low frequencies3, we expect the amplification fac-
tor to tend towards the macro-amplification (

√
|µ|) limit, i.e., |F | ≈

√
|µ| and θF ≈ 0

for a macro-minima image. If we focus on the second column, we notice that for low
magnification values (first three rows where

√
|µ| < 2.5), we indeed observe |F | ap-

proaching
√
|µ| at low frequencies. However, for the rest two higher magnification cases

where |µ| ∈∼ {15, 100}, we notice that |F | >
√

|µ| at lower frequencies. For example,
for
√

|µ| = 3.87 case, we notice |F | ∼ 4.5 > 3.87 while for
√

|µ| = 10.01 case, it is
|F | ∼ 17 > 10. Thus, we notice that with increasing macro-magnification values for
type-I macro-images, the presence of microlens further amplifies the signal. Moreover, in
the last column, we notice that the mismatch between hSL and hSL+ML also increases with
increasing µ. For example, the mismatch values in the first row (where

√
|µ| = 1.49) is

O(10−5) while in the last row (where
√
|µ| = 10.01) the mismatch values are O(10−2).

It is worth noting that, for low magnification cases (
√
|µ| < 2.5), we notice mismatch

values to be ≲ 10−3. This ensures that for low magnification systems, the systematic bi-
ases due to intervening microlens population will not be more pronounced than the statistical
uncertainties until very high SNR values (≳ 102).

The effect of microlens population on type-II macro-images is plotted in Fig. 4.7.

3By low, we usually mean that the wavelength of the signal is much longer than the Schwarzschild
radius of the lens but much shorter than the Schwarzschild radius of the lensing galaxy.
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Figure 4.6: Effect of microlens population on the minima type macroimages. The analysis
is done for five pairs of themacro amplification and the surfacemicrolens density values as
denoted by (

√
µ,Σ•)m in the left-most panels. These values are drawn from our SIEmodel

(see Table 4.1). Left: Normalised F̃ (t) curves, computed numerically using Eq. 4.4. Middle
and Right:The corresponding amplification factor F (f) = |F |eiθF . Each row shows the
analysis for all 36 realisations (coloured differently).

The figure is similar in construction to Fig. 4.6. Here, we only consider two cases of
(
√
µ, Σ•) because of computational reasons. Moreover, we apply a low-pass filter to

our realisations of amplification factor to mitigate numerical errors. A similar investi-
gation as above reveals two insights: (i) We notice that |F | is de-amplified relative to
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Figure 4.7: Same as Fig. 4.6 but for the saddle point macroimages. The analysis is done
for two pairs of the macro amplification and the surface microlens density values as de-
noted by (

√
µ,Σ•)s in the left-most panels. These values are drawn from our SIE model

(see Table 4.1).

Table 4.2: Lens system information, with the lens and source redshifts denoted by zL
and zS, respectively, are listed here. The macro (µmacro) and smooth (µsmooth) magnifi-
cations, the microlens density (Σ⊙), and the network optimal SNR for both the SL-only
case, ρnet

opt(hSL), and the SL+ML case, ρnet
opt(hSL+ML), of our chosen GW150914-like source

are also tabulated.

system zL zS image µmacro µsmooth Σ⊙ [M⊙/pc2] ρnet
opt(hSL) ρnet

opt(hSL+ML) match(hSL, hSL+ML) [%]
1 0.50 0.56 I 4.75 3.27 1030.5 23.7 24.6 99.92

II 10.85 4.66 1419.5 34.9 38.5 99.21

III −11.22 +13.52 2121.6 35.4 34.8 99.96

IV −1.56 −2.57 4905.8 11.5 11.4 99.93

2 0.28 0.50 I 6.92 4.41 304.7 32.3 35.2 99.80

II 11.14 5.54 351.1 50.5 56.5 99.97

III −12.64 +25.99 513.31 55.1 50.5 99.89

IV −2.59 −4.33 864.94 24.9 23.9 99.97

the macro-amplification value as opposed to further amplification we observed in the
case of type-I images. For example, for both cases, we can see that the |F | value at, say,
20 Hz is lower than

√
µ values. This behaviour is expected because in the case of type-

II macroimages, the probability of the source lying in the region of low magnification
becomes significantly higher due to the presence of a microlens population (e.g., Diego
et al. 2018; see figures 5 and 10 in Diego et al. 2019). The fact that minima-images tend to
be further amplified while saddle-point images tend to get relatively deamplified relative
to the macro-amplification (|√µ|) values, on average, due to an intervening microlens
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population is consistent with microlensing studies in the EM domain (e.g., Schechter &
Wambsganss 2002). Moreover, we observe that the mismatch values are also higher in
the case of type-II macroimages as compared to type-I macroimages for similar magnifi-
cations. For example, compare the first row here (where

√
|µ| = 1.50), with mismatch

valuesO(10−5), with that of the first row of Fig. 4.6 (where
√

|µ| = 1.49), with mismatch
values O(10−4).

4.3.3 High density systems

In the above discussion, we primarily talked about how macro-amplification can enhance
microlensing effects. However, onemay askwhat happens at extrememicrolens densities.
In principle, the second saddle-point image in a quadruply lensed system, image-4, can
form in the lens plane where the microlens densities can even exceed 103 M⊙/pc2. So in
this subsection, we study the microlensing effects in image-4 with Σ• > 103 M⊙/pc2. We
select four individual cases of image-4 from quad-lensed systems obtained from a realisti-
cally generated mock sample from More & More (2022) (see Fig. 1 of Meena et al. (2022))
with microlens densities in the range (103, 104) M⊙/pc2. The corresponding macro-
magnifications (|µ|) lie in the range (0.1, 0.6). For each of the four images, we simulate
50 realizations with a patch size of 2 pc × 2 pc.

The resulting absolute amplification (|F |) curves as a function of GW frequencies
are shown in Figure 4.8. For all four cases, we see two different kinds of features: (i)
random oscillations unique to each realization with increasing amplitude as we go from
low to high frequencies. (ii) coherent oscillations across all realizations of four cases at
low frequencies (∼20Hz). The random oscillations are genuine features arising due to the
presence of microlens population and unique in each realization as the microlenses are
randomly distributed. The coherent oscillations at low frequencies are artifacts and arise
due to the finite patch size. Increasing the microlens density while keeping the patch size
fixed can lead to the formation of micro-images near the edge or outside the patch due to
the combined effect of all microlenses inside the patch (e.g., Wambsganss 1999). As these
micro-images are at a large time delay (> 0.1 seconds) with respect to the global minimum
or saddle-point, they introduce oscillatory features at low frequencies. If we increase the
patch size, the micro-images near the edge or outside the patch will disappear (hence the
name spurious images). But, simulating a large patch implies an increase in the number
of microlenses, leading to increase in the computational times. Apart from that, the |F |
curves only show variation of∼ 0.2−0.3 over the mean magnification, which tends to be
less than one and thus, the amplitude of these oscillations is not significant across LIGO--
Virgo frequencies (10 Hz to 103 Hz) resulting in negligible effects in the mismatch as well
as the parameter estimation. Considering these factors, we choose not to simulate bigger
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Figure 4.8: Microlensing effects observed in the saddle points of image-4 in high-density
regions. The absolute part of the amplification factor F (f) is shown as a function of
frequency for four different combinations of {|µ|, Σ•} (corresponding to maroon stars
in Figure 1 of Meena et al. (2022)). There are 50 realizations for each of the four cases,
and their respective macro-magnifications and microlens densities are given in the leg-
end. The amplitude of the distortions due to microlensing is negligible despite the high
microlens densities owing to the low macro-magnification of these images.

patches in the lens plane as it is expected not to affect our conclusion. We conclude that
the microlensing-driven frequency-dependent effects (due to stellar mass population) are
negligible in de-magnified lensed GW signals located in high microlens density regions
within the lens galaxy.

4.4 Effect ofmicrolens population on the signatures of strong
lensing

In this section, we study the effect of microlensing from a population of microlenses on
the search for strongly lensed GW signals. The intervening galaxy or galaxy cluster acting
as a macrolens contains substructures in the form of microlens population that can further
perturb the signal due to microlensing effects (e.g., Diego et al. 2019; Mishra et al. 2021;
Meena et al. 2022). We simulate such signals and investigate their effects on strong lens-
ing searches, particularly on the interpretation of posterior overlap analysis (Haris et al.
2018). To accomplish this, we perform a set of parameter estimation runs. The strongly
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lensed signal, which is taken to further undergo microlensing (to produce an ``SL+ML"
signal), is generated after computing the amplification factor for such systems using the
methodology described in Mishra et al. (2021) and (Mishra, A., in prep.).

Posterior overlap analysis is a fast and robustmethod for identifying potential strongly
lensed pairs of GW signals. The method relies on two primary observations: (i) strongly
lensed images should originate from the same patch of the sky, and (ii) the gravitational
lensing does not affect the GW phasing, which means that the parameter estimation for
the intrinsic parameters should remain unaffected. Consequently, the sky and the in-
trinsic parameters should exhibit similarity between the two images of a strongly lensed
system. So, for any two GW signals, one can compute the overlap between the posteri-
ors for the aforementioned parameters and develop a statistic to assess its significance.
Given the posteriors of two events d1 and d2, the Bayes factor for the (strongly-) lensed
hypothesis over the unlensed hypothesis can be defined as (Haris et al. 2018)

BL
U =

∫
dθθθ
P (θθθ|d1)P (θθθ|d2)

P (θθθ)
, (4.11)

where θθθ is the set of parameters over which we compute the overlap. As mentioned above,
θθθ is at most a 9D quantity, i.e., θθθ = {M, q, a1, a2, θ1, θ2, θJN, α, δ}, where the symbols
have their usual meaning as described in Sec. 2.3.

For the lensing systems, we selected two (quadruply) lensed systems from the catalog
described in More &More (2022). We specifically chose systems where the source redshift
was relatively lower to ensure high SNR events and where the brightest image had a
(macro-)magnification of≳ 10. Asmentioned in Sect. 3.3, we used a GW150914-like event
as the source, including its spins. The properties of both systems are provided in Table 4.2.
As expected, our choice of lens systems with low source redshifts led to a smaller Einstein
angle (0.03′′ and 0.54′′ for system-1 and system-2, respectively) compared to typical lens
systems in EM observations where Einstein angle is ∼ 1′′. However, as we specifically
focus on high SNR systems for our introductory analysis, we proceed with these systems
in our current work and leave a more detailed analysis for future work.

The results of the posterior overlap analysis are shown in Fig. 4.9. This figure com-
pares the Bayes factors in favour of lensing obtained from the posterior overlap analysis
for both the strongly lensed macroimages (black solid circles) and the macroimages that
further undergo microlensing (red solid stars). The middle and right panels of the fig-
ure also display the corresponding (micro-)lensing amplification factors F (f) for the four
macroimages. The small-scale fluctuations observed in the F (f) curves are numerical
artifacts that are mitigated by applying a high-pass filter before their utilization. Firstly,
for system 1 (top row), we note that the Bayes factor values can significantly reduce in
extreme cases of microlensing in the path of a strongly lensed signal. For example, in
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Figure 4.9: Effect of microlensing on strongly lensed GW signals due to a population of
microlenses. Left panel: The comparison between the Bayes factors in favour of lensing
using the posterior overlap analysis is shown for two quadruple-lensed systems (top and
bottom rows), indicating both the strongly lensed systems ("SL only``; represented us-
ing black circled markers) and the systems further undergoing microlensing ("SL+ML``;
represented using star-shaped red markers). Middle and Right panels: A realisation of the
(micro-)lensing amplification factor F (f) is displayed for the four macroimages, resulting
due to the presence of microlens population in the vicinity of the macroimages.

the top-left panel, we see orders of magnitude drop in the BL
U for image pairs I-II, II-III

and II-IV, i.e., all image pairs with the second image. This behaviour can be explained
if we note that the corresponding amplification factor, F (f), curves in the middle and
right panels of the first row. Even though the F (f) curves for the third and fourth images
show large modulations, they do so only at high frequencies (> 103 Hz). On the other
hand, one can clearly notice from visual inspection that only the F (f) curves for image
II (orange-coloured curve) show significant modulations at low frequencies, where most
of the power of the GW is contained. For system 2 (bottom row), we still see Bayes factor
values drop for all image pairs but relatively less than that for system 1. In this case, F (f)
curves for images I and III showed significant modulation at lower frequencies compared
to other images. One can see this from the phase plots in the lower-right panel, where
blue and green curves start deviating from orange and red curves at around ∼ 100 Hz.

One can further ask which of the parameters incorporated for the computation of
the posterior overlap is responsible for such a drop in the Bayes factor values for some of
the microlensing cases. To that end, in Fig. 4.10, we show 1D marginalised posteriors cor-
responding to the parameters used for computing the overlap. For ease of representation,
we denote spin components using {χeff, χp} instead of {a1, a2, θ1, θ2}. The differently
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Figure 4.10: Effect of microlensing due to a population of microlenses on strongly lensed
GW signals. The panels display 1D marginalised posterior distributions for a set of pa-
rameters, as labelled on the x-axis, for two systems (along the row). These parameters
were utilised to compute the posterior overlap, with the exception that we have condensed
the spin parameters to {χeff, χp} instead of {a1, a2, θ1, θ2} for the ease of representation
here. The differently coloured curves correspond to posteriors associated with different
images, as shown in Figure 4.9. The dotted curves represent cases with only strong lens-
ing, while the solid curves depict recoveries for signals that undergo both strong lensing
and microlensing. The dashed black vertical lines represent the injected values.

coloured curves correspond to posteriors associated with different images, as shown in
Fig. 4.9. The dotted curves represent cases with only strong lensing (SL only), while the
solid curves depict recoveries for signals that undergo both strong lensing and microlens-
ing (SL+ML). The dashed black vertical lines depict the injected values. We notice that the
posteriors for most of the parameters are well recovered around the true injected value
for both cases (SL only and SL+ML). However, in system 1, the posteriors representing
the recoveries for the second image of SL+ML case show the maximum deviation from the
injected value among different parameters (solid orange-coloured curves). In the case of
system 2, although the deviation between the recovered parameters for the SL and SL+ML
scenarios is largely similar, the posterior distributions for parameters in the SL+ML case
exhibit slightly greater variability, which can be attributed to the variability in F (f) val-
ues for different images.

Among all the parameters considered here, the sky-position parameters, i.e., RA and
Dec (α and δ), are the best-recovered parameters, as their posteriors are sharply peaked
around the injected value for both systems. Therefore, the sky-position parameters con-
tribute the most to the posterior overlap values. The drop in the Bayes factor values is
then mostly coming from the biased recoveries of parameters like {Mdet, χeff, χp, θJN}
for SL+ML case.

We note that in this section, we studied only a few scenarios of microlensing due
to a population of microlenses affecting strongly lensed GWs. Due to our selection of
systems with high SNR values, even small deviations (high match values in Table 4.2; also
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see Fig. 4.10) led to a significant decrease in the Bayes factor. However, it is important to
conduct a more comprehensive statistical study to generalise the effects of microlensing
on strong lensing searches. We leave this to future investigations.

4.5 Conclusions

In this chapter, we investigated the effects of microlensing in the LIGO/Virgo frequency
band when a microlens, or a population of them, is embedded in a macro-potential. We
first developed methodologies for simulating amplification factor curves for both types of
macroimages, minima (type-I) and saddle points (type-II). We studied how macrolens pa-
rameters, such as local convergence, shear and orientation of microlens relative to shear,
etc., affect microlensing. Additionally, we calculated the microlensing effects for various
combinations of surface microlens density and macro-magnification, typically found at
the location of macroimages in galaxy-scale lenses.

Our main conclusions from these investigations are as follows.

1. The most important factor for microlensing to be significant is the strong lensing am-
plification value (

√
µ) regardless of other parameters, such as the stellar density, type

of images or IMF. This happens due to the fact that the image plane gets compressed
by a factor of µ in the source plane, leading to the high density of overlapping micro-
caustics. Moreover, higher µ allows relatively larger time delays between sufficiently
amplifiedmicroimages, which causesmodulation even at lower frequencies (e.g., Diego
2019; Diego, Jose M. 2020). From our analyses, we observed that microlensing effects
are not significant at low macro-magnifications (µ ≲ 15). However, the likelihood of
finding realisations that may affect GWs significantly increases at high macromagnifi-
cation values (µ ≳ 100).

2. On average, the microlensing population tends to introduce further amplification (de-
amplification) for minima (saddle points). Similar behaviour is also seen in the lensing
of EM waves (e.g., Schechter & Wambsganss 2002; Foxley-Marrable et al. 2018).

3. With increasing surface microlens density, we find an overall rise in scatter in F (f).
This is because of the presence of many microimages, which interfere, leading to more
complex interference patterns.

4. In extreme cases of macro-magnification (≳ 100), we notice that the mismatch values
are high and can even exceed ∼ 5%. Such high magnification for GW sources is pos-
sible as they are point-like sources. When they lie very close to macro-caustics, their
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magnifications can indeed be very high µ ∼ O(102−103) and hence, such possibilities
cannot be ignored.

5. Finally, to study the effect of microlensing on the search of strongly lensed GW signals,
specifically the posterior overlap analysis, we focused our attention on a much more
complex scenario of microlensing when a strongly lensed GW signal encounters a pop-
ulation of O(104) microlenses present in the lensing galaxy. We find that, in general,
the presence of microlens population decreases the measured Bayes factor in favour
of strong lensing (see Fig. 4.9). However, the exact amount of drop is sensitive to the
magnitude of microlensing effects in the signal, which in turn depends primarily on the
strong lensing magnification and properties of the microlens population. This suggests
that, in extreme cases, the presence of microlensing may pose challenges in accurately
identifying and characterizing strongly lensed GW signals. However, a more detailed
study is required to generalise the above inferences.
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Chapter 5

Unveiling Microlensing Biases in Testing
General Relativity with Gravitational
Waves

GW from chirping BBHs provide unique opportunities to test GR in the strong-field
regime. However, testing GR can be challenging when incomplete physical modeling of
the expected signal gives rise to systematic biases. In this chapter, we investigate the
potential influence of wave-optics effects in GL (which we refer to as microlensing) on
tests of GR using GWs for the first time. We utilize an isolated point-lens model for mi-
crolensing with the lens mass ranging from 10− 105 M⊙ and base our conclusions on an
astrophysically motivated population of BBHs in the LIGO-Virgo detector network. Our
analysis centers on two theory-agnostic tests of gravity: the inspiral-merger-ringdown
consistency test (IMRCT) and the parameterized tests, providing insights into deviations
from GR across different evolutionary phases of GW signals: inspiral, intermediate, and
merger-ringdown. Our findings reveal two key insights: First, microlensing can signifi-
cantly bias GR tests, with a confidence level exceeding 5σ. Notably, substantial deviations
from GR (σ > 3) tend to align with a strong preference for microlensing over an unlensed
signal, underscoring the need for microlensing analysis before claiming any erroneous GR
deviations. Nonetheless, we do encounter scenarios where deviations from GR remain
significant (1 < σ < 3), yet the Bayes factor lacks the strength to confidently assert mi-
crolensing. Second, deviations from GR correlate with pronounced interference effects,
which appear when the GW frequency (fGW) aligns with the inverse time delay between
microlens-induced images (td). These false deviations peak in the wave-dominated region
and fade where fGW · td significantly deviates from unity. Particularly, in the geometrical
optics regime (fGW ·td ≫ 1), biases remainminimal despite instances of strongmicrolens-
ing effects. Our findings apply broadly to any microlensing scenario, extending beyond
specific models and parameter spaces, as we relate the observed biases to the fundamental
characteristics of lensing.
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5.1 Introduction

GR has withstood numerous strong field gravity tests and remains the most successful
theory of gravity to date. These tests encompass a wide range of phenomena, from pre-
cise solar system measurements (Will 2006) to the observation of binary pulsars (Wex
2014), and most notably, the direct detection of GWs by the LIGO (Aasi et al. 2015) and
Virgo (Acernese et al. 2015) detectors. The groundbreaking observations from the first
three observing runs of Advanced LIGO and Advanced Virgo (Abbott et al. 2019b, 2021a;
The LIGO Scientific Collaboration et al. 2024; Abbott et al. 2023) have provided a unique
opportunity to explore the characteristics of gravity within the highly nonlinear and dy-
namic regime (Abbott, B. P. and others 2016; Abbott et al. 2019c,a, 2021d,b), thus subjecting
Einstein's theory of gravity to novel scrutiny. The remarkable agreement between these
observations and the predictions of GR has consistently reaffirmed the theory's robustness
and validity.

The LIGO-Virgo-KAGRA (LVK) collaboration has been instrumental in conducting
rigorous tests of GR using GWs. These tests primarily rely on GR to identify potential
deviations from its predictions, as no reliable modified gravity WF models are currently
available which can describe the complete inspiral-merger-ringdown dynamics of a com-
pact binary system. It involves comparing the data collected by GW detectors with theo-
retical WF models. While such tests have effectively probed GR in various aspects, they
also exhibit sensitivity to unaccounted-for physical phenomena, including eccentricity
and the presence of exotic compact objects, in addition to potential beyond-GR physics.
Hence, it is imperative that these models incorporate all relevant physics to avoid any
potential false biases in the tests.

One particularly intriguing source of bias in tests of GR arises from the propaga-
tion effect of lensing of GWs when they traverse the vicinity of massive objects. The
observed alterations encompass a spectrum of manifestations, including repeated events,
phase shifts, variations in amplitude, the emergence of beating patterns, and distortions.
From probing the relative speeds of GWs with respect to light (Collett & Bacon 2017; Fan
et al. 2017), modified velocity dispersion (Yang et al. 2019; Chung & Li 2021) and propa-
gation (Mukherjee et al. 2020; Mukherjee, Suvodip et al. 2020; Finke et al. 2021; Iacovelli
et al. 2022), to understanding the nature of GWpolarization in alternate theories of gravity
with additional degrees of freedom (Goyal et al. 2021; Magaña Hernandez 2022) leading
to birefringence (Goyal et al. 2023), lensing can be a useful tool for GR tests.

In this chapter, we will focus on the lensing scenario where a GW signal traverses the
spacetime near an isolated compact object (microlens) such that the (micro-)images pro-
duced by the microlens are not resolved temporally, leading to either interference effects
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or superposition of images. This phenomenon, which we refer to as microlensing1, may
lead to significant frequency-dependent effects if the frequency of the signal is comparable
to the inverse time delay between microimages (Deguchi &Watson 1986; Nakamura 1998;
Baraldo et al. 1999; Nakamura & Deguchi 1999; Bulashenko & Ubach 2022; Leung et al.
2023; Mishra et al. 2023b). These microlenses can be in the form of stars, stellar remnants,
or even compact dark matter, etc., in the mass-range ∼ 1 − 105 M⊙. This mass range is
particularly pertinent for ground-based detectors searching for microlensing signatures
and aligns with the parameter space used by the LVK collaboration (Abbott, R. and others
2021; The LIGO Scientific Collaboration et al. 2023a). We explore the underlying physics
of these lensing phenomena and investigate how they can affect the observed GW signals
and their potential to introduce biases in the tests of GR. We note that the search for such
microlensing signatures can shed light on the fraction of compact dark matter objects in
this mass range (Jung & Shin 2019; Basak et al. 2022; Diego, Jose M. 2020). In this chapter,
we restrict ourselves to isolated point lenses and do not consider complex scenarios of
microlensing, such as microlenses embedded in a strong lens potential (Diego et al. 2019;
Diego, Jose M. 2020; Seo et al. 2022; Mishra et al. 2021; Meena et al. 2022; Meena 2023).
We also restrict ourselves to ground-based detectors. However, wave-optics effects in the
context of space-based detectors can also affect the inferred parameters (Çalışkan et al.
2023c,a) and might lead to biases in the tests of GR. We also note that we do not con-
sider lensing scenarios where the images are completely separated out, i.e., the time delay
between the images is larger than the duration of the signal (strong-lensing cases).

We focus on two fundamental types of tests: consistency tests and parameterized
tests, each designed to scrutinize GR in distinct ways. Consistency tests, as the name
suggests, focus on evaluating the adherence of observed GW signals to the expected be-
havior prescribed by GR, without invoking specific parameterizations of deviations from
the theory. These tests serve as ameasure of the self-consistency of the signal or its overall
consistency with the available data. In this chapter, we use the inspiral-merger-ringdown
consistency test (IMRCT) (Ghosh et al. 2016, 2018). The IMRCT seeks to ascertain the
consistency between the low-frequency and high-frequency components of the GW sig-
nal, shedding light on potential departures from GR (Abbott, B. P. and others 2016; Abbott
et al. 2019a, 2021d,b). In contrast to consistency tests, parameterized tests are tailored to
invoke specific parametrizations that are particularly suited to uncover deviations from
GR rooted in distinct physical effects. For instance, here we deploy the parameterized

1Some authors specifically differentiate the phenomenon where multiple images overlap from interfer-
ence effects, referring to it as millilensing (e.g., Liu et al. 2023). Millilensing can also result in a modulated
signal (see Fig. 1 in Janquart et al. 2023). In our study, while we primarily focus on the lensing parameter
space relevant for inducing wave effects, we use the term ``geometric optics regime" within our microlens-
ing parameter space for cases where signals can be assumed to overlap as a result of lensing.
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tests of post-Newtonian (PN) coefficients which are designed to be sensitive to physical
effects manifesting at different PN orders (Arun et al. 2006b,a; Yunes & Pretorius 2009; Li
et al. 2012; Yunes et al. 2016).

In this chapter, we explore the possibility of microlensing-induced biases in tests of
GR. We first analyze simulated GW150914-like microlensed signals, which serve as our
initial motivation for the exploration of these biases and enable us to search for any pos-
sible patterns in the distortions. We find that the biases are pronounced where the wave
effects are dominated but do not correlate with the detection statistic that the LVK collab-
oration uses for microlensing searches. We further validate our findings for a population
of simulated GW signals. Through a rigorous examination of this lensing scenario, we
contribute to the ongoing effort to ensure the accuracy and robustness of GR tests con-
ducted in the strong gravitational field regime. To our knowledge, this is the first such
study that looks into the biases in tests of GR due to frequency-dependent modulations
coming from wave-optics effects. However, we do note that some previous studies have
explicitly looked into the effect of Morse phase shift in type-II strong lensing scenarios,
which is also a consequence of the wave-optics effect capable of biasing inferred param-
eters (Ezquiaga et al. 2022; Janquart, Justin and Seo, Eungwang and Hannuksela, Otto A.
and Li, Tjonnie G. F. and Broeck, Chris VanDen 2021; Vijaykumar et al. 2023). These phase
shifts can introduce distortions that may be degenerate with GW propagation involving
a modified dispersion relation, potentially leading to biases in tests of GR (Ezquiaga et al.
2022).

This chapter is mainly based on the paper Mishra et al. (2023a), and is organized as
follows: In Sect. 5.2, we discuss the basics of microlensing and the two tests of GR that
we adopt for our study. We also give details of our computational setup. In Sect. 5.3, we
discuss the results from our analysis and conclude in Sect. 5.4. We consistently report all
mass related quantities, such asMLz, in units of the solar mass (M⊙).

5.2 Basics

5.2.1 Tests of General Relativity (TGR)

Inspiral-Merger-Ringdown Consistency Test (IMRCT)

The IMRCT is one of the standard consistency tests of GR that is performed on real GW
events. The test relies on checking the consistency between the measurements of mass
and spin of the remnant BH inferred independently from the inspiral and post-inspiral
parts of the GW signal. The demarcation between the inspiral and the post-inspiral regime
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is typically done by employing a cutoff frequency f IMR
c in the frequency domain, which

is the dominant mode GW frequency fISCO of the innermost stable circular orbit (ISCO)
of the remnant Kerr BH with massMf and dimensionless spin χf . In this work, the ISCO
frequency of the final Kerr black hole is measured using the median values of the 1D-
marginalized posteriors of the final mass and spin inferred from the full IMR WF2 (Ghosh
et al. 2016, 2018). To calculate the final mass and spin, we use the NR-calibrated fits
as detailed in Ref. (Abbott et al. 2017b, 2021d; Johnson-McDaniel et al. 2016) where the
method extends the final spin fit of aligned-spin binaries to a precessing case (see Eqn. 1
of Ref. (Johnson-McDaniel et al. 2016) for details).

To elaborate, we independently infer the posterior distributions ofMf and χf from
both the inspiral and the post-inspiral parts of the signal by using the augmented NR
calibrated final state fits (Hofmann et al. 2016; Jiménez-Forteza et al. 2017; Healy & Lousto
2017). To constrain possible deviations from GR, a set of fractional deviation parameters
∆Mf/M f and ∆χf/χf are defined, where

∆Mf

M f

≡ 2
M insp

f −Mpost−insp
f

M insp
f +Mpost−insp

f

(5.1)

and

∆χf
χf

≡ 2
χinsp
f − χpost−insp

f

χinsp
f + χpost−insp

f

, (5.2)

whereMf and χf denote the mean values and the superscripts denote the inspiral (insp)
and the post-inspiral (postinsp) portions of the signal. If a given GW signal is consistent
with GR, the fractional deviations∆Mf/M f and∆χf/χf should vanish in the ideal situ-
ation. We estimate the posteriors on these fractional deviation parameters and check the
consistency with GR.

To check the consistency of inspiral and post-inspiral measurements statistically, we
use the GR quantile QGR. In this case, the GR quantile for the 2-D distribution of final
mass and spin parameters measures the fraction of the posterior samples that contain the
GR value. Specifically, we utilize the summarytgr executable within PESummary (Hoy &
Raymond 2021) to calculate the GR deviations. Notice that a smaller value denotes better
agreement with GR, meaning that a large fraction of samples are contained in a small iso-
probability contour. We use IMRPhenomXPHM (Pratten et al. 2021) as our WF approximant
for both injection and recovery of the IMRCT analysis throughout.

2We note that the LVK analyses use a more complicated method to compute fISCO from the posteriors
obtained from IMR, see, e.g., (Abbott et al. 2019a, 2021b).
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Parameterized test

The dynamics of a BBH system can be described in three regimes: the inspiral, the merger
and the ringdown. In the inspiral, the post-Newtonian formalism accurately describes
the evolution, which is an expansion in the velocity parameter v/c ≪ 1, where c is the
velocity of light (Blanchet 2006). In contrast, one needs numerical relativity techniques
to model the dynamics towards the merger regime (Pretorius 2007; Duez & Zlochower
2019), where the strong-field dynamics play a critical role. In the post-merger phase, BH
perturbation theory provides a good description (Berti et al. 2006).

Parameterized tests of post-Newtonian (PPN) theory are among the multiple ways
of performing theory-agnostic tests of GR. Even though the PPN tests were restricted
to the inspiral regime (Arun et al. 2006b,a; Agathos et al. 2014), later on, they were also
extended to the post-inspiral regime by employing the phenomenologicalWFmodels (Ab-
bott et al. 2019a, 2021d; Meidam et al. 2018; Abbott, B. P. and others 2016; Abbott et al.
2019c,a, 2021d). The PPN tests introduce a novel way of looking for deviations in the
inspiral-merger-ringdown coefficients from the GR model by appropriately incorporat-
ing parameterized deviation coefficients in the model. We denote the inspiral coefficients
as {χi}3, and the post-inspiral coefficients as {αi, βi}, where {βi} accounts for deviations
mainly in the intermediate phase while {αi} in the merger-ringdown phase. The parame-
terized deviations to these coefficients are of the form, χi → (1+δχ̂i)χi, αi → (1+δα̂i)αi
and βi → (1 + δβ̂i)βi, where δχ̂i, δα̂i and δβ̂i are the fractional deviations from the GR
coefficient. In the case of phenomenological WF models, the post-Newtonian inspiral co-
efficients are extended further by fitting to numerical relativity coefficients (Ajith et al.
2008, 2011; Santamaria et al. 2010; Husa et al. 2016; Khan et al. 2016; García-Quirós et al.
2020; Pratten et al. 2020). Besides the inspiral, the parameters δβ̂i explicitly capture de-
formations in the NR calibrated coefficients βi in the intermediate regime, whereas the
parameters δα̂i describe deformations of the merger-ringdown coefficients αi obtained by
calibration to NR (Meidam et al. 2018; Abbott et al. 2019a). The data provide constraints
on these parameterized deviations from GR and can be used to test the consistency of GR.
That means we obtain posterior probability distributions on each of the parameterized
deviation coefficients. If the data is consistent with GR, the distribution will peak at zero,
the GR value. Any deviation from GR can hint at the presence of an alternative theory
model or missing physics in our models, such as various systematic effects. To quantify
such a possible deviation from GR, we use σGR, defined as, σGR = (µ− µGR)/σ. Here µ
is the mean of the distribution, µGR is the GR value, and σ is the standard deviation of the
posterior distribution. Since µGR = 0, we simply get σGR = µ/σ.

3Not to be confused with the spin parameter.
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In this study, we restrict to two inspiral coefficients, δχ̂0 (0PN) and δχ̂4 (2PN), respec-
tively, which appear in the Newtonian and the second post-Newtonian order in the inspi-
ral phase of the WF. Moreover, we consider two coefficients in the post-inspiral regime:
δβ̂2 from the intermediate phase and δα̂2 from the merger-ringdown phase. We employ
IMRPhenomPv24 WFmodel for this study, which is a dominant-mode model for precessing
BBHs where the inspiral coefficients are obtained from PN theory and calibration to NR
WFs, and the post-inspiral coefficients by fitting to NR-simulations (Hannam et al. 2014;
Husa et al. 2016; Khan et al. 2016; Alejandro et al. 2016). Consequently, the inspiral phase
is defined up to a cutoff frequency fcut = fPAR

c = 0.018/M , where M is the total mass
of the binary (Husa et al. 2016; Khan et al. 2016).

5.2.2 GW data analysis and Parameter Estimation Setup

Building on the discussion in Section 2.3, we discuss some general setups commonly uti-
lized throughout this chapter.

Injections

Firstly, in Sect. 5.3.1, we consider a set of 30 zero-noise microlensed BBH injections, con-
sisting of GW150914-like non-spinning signals with addedmicrolensing effects. The com-
ponent masses and the extrinsic parameters of the signals are kept similar to those of
GW1509145, except for the luminosity distance, which is tuned to fix the network opti-
mal SNR to 50 for each injection in the detector network of advanced LIGO at Hanford,
Livingston and, Virgo. In addition, the spin components are kept zero to avoid possible
systematic errors in the inference of the deviation parameters from GR and make sure any
biases arise predominantly from microlensing effects. This is because one needs to have
even higher SNR values of ≳ 102 to reliably estimate both the spin components (Pürrer
et al. 2016). The microlens parameters used for generating the injections correspond to
log10MLz ∈ {1, 2, 3, 4, 5} and y ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 3.0}, making 30 injections
in total.

4Though there are recent phenomenological models with more accurate spin-precesion descrip-
tion (Pratten et al. 2021, 2020) and sub-dominant modes (García-Quirós et al. 2020), we stick to IMRPhe-

nomPv2 WF model for our analysis.

5The posterior samples can be found at https://zenodo.org/records/6513631. Specifically, we
used the median values of 1D-marginalized posteriors from the `C01:Mixed' channel in `IGWN-GWTC2p1-
v2-GW150914_095045_PEDataRelease_mixed_cosmo.h5'.
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In Sect. 5.3.2, to robustly analyze the effect of microlensing on tests of GR, we con-
sider a population of simulated microlensed signals. We generate a mock GW data set of
∼ 2.5×104 microlensed BBH signals, where the mass and spin priors are derived from the
inferred population model of GWTC-3 data (Abbott et al. 2023): the source-frame compo-
nent masses are sampled from the Power Law + Peak distribution and spin parameters are
drawn from a Gaussian isotropic distribution. We assume the Madau-Dickison profile for
the merger rate density in the universe (Madau 1997; Fishbach et al. 2018), with the source
redshift range set to zS ∈ (0.001, 10). The upper limit of zS = 10 is set because isolated
point lenses tend to amplify the signals, increasing their optimal SNR and, consequently,
their detection horizon Mishra et al. (2023b). To sample microlens parameters, we assume
a log-uniform prior inMLz and a linear power-law prior for y, where:

p(log10MLz) ∝ Uniform(1, 5),

p(y) ∝ y, y ∈ (0.01, 3.00).
(5.3)

The motivation to use p(y) ∝ y comes from geometry and isotropy (Lai et al. 2018). The
other parameters were sampled from the usual prior distributions: isotropic sky location
and orientation, and uniform polarization angle. We put an observed network SNR, ρN

opt,
threshold of 8 when using the unlensed templates for recovery in the LIGO-Virgo detec-
tor network. We further impose an additional requirement that SNR > 6 in both the
inspiral and post-inspiral parts of the signal. This requirement ensures that we have an
adequate amount of information for our analyses in both signal regimes. The demarcation
between these two regimes is done via a cutoff frequency fcut in the frequency domain.
We define fcut = fISCO for IMRCT and fcut = fPAR

C for the parameterized test, as ex-
plained in Sect. 5.2.1. For performing IMRCT, these SNR thresholds are consistent with
the previous analyses (Abbott et al. 2021b,d). However, we note that for parameterized
tests, our SNR thresholds are stricter. For example, to study the deviations in the coef-
ficients corresponding to the inspiral regime, such as δχ̂0 and δχ̂4 considered here, one
only needs to have the inspiral SNR > 6. A stricter condition of SNR > 6 in both the
inspiral and post-inspiral regimes is employed so that each injection can be analyzed for
all four testing GR parameters.

Parameter Estimation

Throughout this chapter, we use the publicly available Bayesian inference library BilbyAsh-
ton et al. (2019) for performing parameter estimation runs. Specifically, we use the dynesty Spea-
gle (2020) nested samplerwith the `acceptance-walk' method for theMarkov-ChainMonte-
Carlo (MCMC) evolution as implemented in Bilby, along with the sampler settings of
nlive= 1024, n-accept= 60 and n-parallel= 2 per injection. The lower frequency limit of
the likelihood evaluation is set to flow = 20 Hz, which is also the reference frequency.
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Furthermore, in order to compute microlensing effects, whether for generating mi-
crolensed injections or inferringmicrolens parameters, we employ a custom frequency do-
main sourcemodel, which incorporates the twomicrolensing parametersMLz and y in ad-
dition to the standard 15 BBHparameters and ismade publicly available via Python/Cython
package GWMAT (Mishra, A., in prep.).

While inferring microlens parameters in our simulated microlensed signals with in-
jected MLz ≡ M true

Lz and y ≡ ytrue, we assume a log-uniform prior in MLz and a linear
power-law prior for y, where:

p(log10MLz) ∝

{
Uniform(−1, 5), if log10M

true
Lz < 3

Uniform(−1, 7), otherwise
(5.4)

p(y) ∝ y,where

{
y ∈ (0.001, 3.00), when ytrue < 1

y ∈ (0.001, 5.00), otherwise.
(5.5)

We also use these priors while generating a population of microlensed signals.

For the parameterized test of GR, we independently vary each of the four deviation
parameters instead of simultaneously varying them, aligning with the methodology em-
ployed in the LVK catalog analyses (Abbott et al. 2021d,b) and similar studies (Narayan
et al. 2023). However, we do note that in an alternative theory of gravity, one would antic-
ipate modifications to all post-Newtonian (PN) coefficients beyond a certain order. This
choice of varying only one parameter at a time is made to avoid uninformative results,
as observed in cases where multiple parameters are allowed to vary simultaneously, as
illustrated for GW150914 in (Abbott, B. P. and others 2016). Nevertheless, earlier stud-
ies (Meidam et al. 2018; Johnson-McDaniel et al. 2022) have demonstrated that even when
varying a single testing parameter, it is still possible to detect deviations from GR that
modify multiple PN coefficients (even when this testing parameter is itself not modified).

5.2.3 Comparative Analysis of Fitting Factor and Time-Delay Trends
in the Microlensing Parameter Space

In Fig. 5.1, in addition to showing the trend of fML, we also illustrate the trend of variation
of FF in theMLz −y parameter space. For each microlensed signal, the binary parameters
are kept fixed to a non-spinning equal mass binary having 60 M⊙

6, and the FF value is

6We note that the general trend of the variation of the FF values in theMLz − y parameter space should
not depend on the source properties because the FF depends only weakly on the binary parameters relative
to the lensing parameters (see Fig. 2 in Mishra et al. 2023b).
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Figure 5.1: Similar to Fig. 2.2 butwith added FF contours, illustrating the contrast in trends
between the variations of fML and the FF values when microlensed signals are recovered
using unlensed templates. fML indicates the onset of significant microlensing effects (see
Eq. 2.12), whereas FF is related to the Bayes Factor in favour of microlensing against the
unlensed hypothesis (see Eq. 2.33). The analysis is conducted within the parameter space
relevant to isolated point lenses, focusing on the current-generation ground-based de-
tectors. The fML values are shown in Blue - Green colorbar. Contours at 10 and 1000

Hz denote the rough transition regions, dividing the parameter space into three zones.
(i) Long-Wavelength Regime where the GW frequency (fGW) is significantly lower than
fML, meaning fGW ≪ fML, resulting in minimal interaction between GWs and the mi-
crolens, as seen from the light green colored region of the figure. (ii) Wave Dominated
Zone: This is the region where fGW ∼ fML, leading to substantial interference effects
on GWs, depicted with light blue color. (iii) Geometrical-Optics Regime: The right-most
region in the figure is shown with light coral colour where fGW ≫ fML. This region is
inclusive of milli-lensing and strong-lensing scenarios. Blue - Green colorbar represent
FF contours where the parameters of the source binary are kept fixed to a non-spinning
equal mass binary having 60 M⊙. For each microlensed WF, the FF values are computed
by maximizing its match with the unlensed WFs within the parameter space of compo-
nent masses and aligned spins.
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obtained by maximizing the match between the microlensed WF and the 4-dimensional
aligned-spin template WFs, modelled by the two component masses and their aligned
spins. The match is maximized using the Nelder-Mead algorithm as implemented in the
`optimization' module of the Scipy library (Virtanen et al. 2020). As we can see, the trend
of variation of FF is different from that of the variation of fML. Notably, the FF values
roughly increase as we move towards the bottom-right corner of the parameter space,
with increasing MLz and 1/y values. Conversely, the fML values increase as we move
from the top-right corner of theMLz − y parameter space towards the bottom-left corner.
It is important to note that the region where wave effects dominate differs from the area
associated with low match values (high Bayes factor values in favour of microlensing).
This observation plays a crucial role in the interpretation of our results.

It is important to note that the region where wave-optics effects dominate differs
from the area associated with low match values (high Bayes factor values in favour of
microlensing). This observation plays a crucial role in the interpretation of our results.

5.3 Results and Discussions

5.3.1 GW150914-like Microlensed Injections

As described in Sect. 5.2.2, here we consider zero-noise GW150914-like non-spinning in-
jections with added microlensing effects. The microlens parameters used for generating
the injections correspond to log10MLz ∈ {1, 2, 3, 4, 5} and y ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 3.0},
making 30 injections in total. These ideal microlensed BBH injections serve as our initial
motivation for the exploration of microlensing-induced biases in tests of GR and enable
us to search for patterns in the distortions, helping us identify the intriguing microlensing
parameter space where deviations become more prominent.

IMRCT

We conduct six sets of parameter estimation runs for all the 30 microlensed injections.
In the case of IMRCT, each set includes runs for the inspiral part, post-inspiral part,
and the full IMR signal, for both unlensed and microlensed hypotheses. The inspiral
and post-inspiral regions of our injections are demarcated by the cutoff frequency of
f IMR

c = fISCO = 128 Hz.7

7We note that in the ideal case, one may determine this cutoff frequency from the mass and spin es-
timates of the binary considering the full-IMR analysis. However, even when computed using un-lensed
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Figure 5.2: IMR consistency test results for GW150914-like microlensed injections, highlighting
deviations from GR (QGR), alongside the microlensing Bayes factor (log10 BML

UL ) for reference.
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In Figure 5.2, we present the results of the IMR consistency test for GW150914-like
microlensed injections. We focus on identifying deviations from GR using the GR quan-
tile value, denoted as QGR. We also illustrate the logarithmic Bayes factor log10 BML

UL in
favour of the microlensed hypothesis over the unlensed hypothesis for the full IMR sig-
nal, for reference. Firstly, in Figure 5.2a, we depict the relationship between QGR and
log10 BML

UL . We immediately observe that microlensing effects can introduce bias in the
IMR consistency test, resulting in highQGR values that surpass 90% in some cases. How-
ever, despite noting several occurrences of high QGR values (> 70%) when log10 BML

UL is
also high (> 1), we do not discern any significant correlation between the two quantities.
In other words, there are instances where log10 BML

UL is low (< 1), yetQGR is high (> 70%),
and vice versa, where QGR is low (< 10%), even when log10 BML

UL is high (> 1).

Upon closer inspection, we find that the dependence of QGR and log10 BML
UL values

on theMLz − y parameter space shows a characteristic trend that is notably different be-
tween the two (see Figs. 5.2b and 5.2c). Specifically, log10 BML

UL adheres to the expected
behaviour, monotonically increasing as we increase the lens mass while reducing the im-
pact parameter. For instance, in Fig. 5.2c, the log10 BML

UL is negativewhere themicrolensing
effects are weak (for injections having either log10MLz = 1 or y = 3) and increases as we
move towards the bottom-right region in the log10MLz − y plane, where it reach values
O(102), indicating strong preference for microlensing. In contrast, the variation in the
QGR values does not mirror the trend as exhibited by log10 BML

UL , as significant QGR val-
ues (exceeding 50%) are primarily confined within a diagonal region spanning from the
top-left to the bottom-right corner. Within the diagonal region, the QGR values are high
for high lens mass and low impact parameters (bottom-right region of the diagonal) and
decrease as we move up in the diagonal towards the top-left direction.

As shown in Figure 2.2 and elaborated upon in Sect. 2.2.1, the diagonal region in the
log10MLz − y parameter space corresponds to the range where wave effects dominate
within the sensitivity band of ground-based detectors. In practical terms, the microlens
parameters lying in this diagonal region would lead to interference patterns for signals in
the frequency range of roughly 10-1000 Hz. We observe thatQGR is significant primarily
within the `wave-dominated zone' and decreases as it moves toward the `long-wavelength
regime'. Conversely, in the `geometric-optics regime' (the parameter space where the

IMR recoveries, the value of fISCO for our injections typically remains close to ∼ 130 Hz, except for a few
exceptional cases where it varies between, roughly, 115 Hz and 160 Hz. It is important to note that the
choice of the cutoff frequency itself serves as an arbitrary threshold for distinguishing the inspiral phase
from the post-inspiral phase. Previous studies have demonstrated that small variations in the cutoff fre-
quency do not have a significant impact on the IMRCT results (Ghosh et al. 2016). Therefore, we believe
that these variations in fISCO do not substantially affect our findings. Moreover, our choice of a high SNR
of 50 ensures that there is sufficient information content in both the inspiral and post-inspiral phases for
accurately inferring the final mass and spin.
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geometric-optics approximation tends to hold), we often encounter caseswhere deviations
from GR are minimal (QGR < 10%) albeit the lensing effects being very high log10 BML

UL ∼
O(10).

Therefore, from Fig. 5.2c, it is evident that deviations from GR appear to occur primar-
ily when interference effects are pronounced. We will further validate this claim using a
parameterized test as well as by studying a simulated population similar to GWTC-3 in
the following sections.

Parameterized test of GR

To further investigate the apparent deviation from GR due to microlensing effects in the
inspiral, intermediate, and merger-ringdown phases of the signal, we perform the param-
eterized test of GR on our microlensed injection set. As discussed in Sect. 5.2.1, we utilize
four parameterization variables: δχ̂0, δχ̂4, δβ̂2, and δα̂2.

In Fig. 5.3, we show the results of the parameterized test conducted on our mi-
crolensed injection set. Each of the four panels displays the Gaussian sigma values at
which GR is excluded (σGR; see Sect. 5.2.1) in one of the four parameterized parameters,
as indicated in the colorbar, within the log10MLz−y parameter space. The larger the mag-
nitude of σGR, the greater the significance of deviations from GR. For better visualization,
we mark the cases with significant deviations (σGR > 1) using a diamond marker instead
of the circular markers. For all four parameters, we observe that the deviations are primar-
ily significant within the wave-dominated zone and gradually decay as we move further
into the long-wavelength regime. Meanwhile, the geometrical optics regime doesn't give
any significant deviations. This pattern resembles our observation of the QGR value in
Fig. 5.2c.

To robustly illustrate the relationship between the deviations from GR and the char-
acteristic frequency fML at which wave effects caused by a microlens are expected to
become more pronounced, we suppress the two-dimensional parameter space ofMLz−y,
shown in Fig. 5.3, into a one-dimensional representation using fML. We then represent
the sigma deviation values in Fig. 5.4, explicitly emphasizing three distinct regions: the
long-wavelength regime, the wave-dominated zone, and the geometrical-optics regime.
Moreover, we also depict the log10 BML

UL values for each injection using a colormap for
comparison between the deviations from GR with the overall strength of microlensing.
The transparent markers that are not colored and only contain a black edge (unfilled cir-
cles) are cases where log10 BML

UL < 0 are cases where log10 BML
UL < 0. We also mark the 1σ

and the 3σ deviations with dotted-red lines for better visualization.

For all four parameters, we clearly observe that the deviations from GR primarily
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Figure 5.3: Bias in the parametrised test of GR in GW150914-like microlensed injections for four
deviation parameters {δχ0, δχ4, δα2, δβ2}. Each of the four panels displays the Gaussian sigma
values at which GR is excluded (σGR) in one of the four parametrized parameters, as indicated in
the colorbar, within the log10MLz − y parameter space. The larger the magnitude of σGR, the
greater the significance of deviations from GR. For better visualization, we mark the cases with
significant deviations (σGR > 1) using a diamond marker instead of the circular markers.

increase in the wave-dominated zone (blue shaded region in the middle of each panel),
including several cases with σGR ≳ 58 for all the parameters. Similarly, within the
long-wavelength regime, we only observe significant deviations (σGR > 1) for param-
eters that measure deviations in the post-inspiral regime, i.e., δα̂2 and δβ̂2, where we also
observed slight deviations around the intersection of the wave-dominated zone and the

8We note that based on O(104) sample points in our posterior distributions, a value greater than 3

Gaussian sigma cannot be stated with certainty (Narayan et al. 2023). Nonetheless, we still quote the actual
Gaussian sigma values derived from our distributions, along with this cautionary note.
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Figure 5.4: Similar to Fig. 5.3, but with MLz − y parameter space suppressed into a one-
dimensional representation using fML (see Eq. 2.12). The figure highlights three scenarios: the
long-wavelength regime, the wave-dominated zone, and the geometrical optics regime. The col-
ormap represents log10 BML

UL values for each injection. Transparent markers with black edges indi-
cate caseswhere log10 BML

UL < 0. Dotted-red lines indicate the 1σ and 3σ significance of deviations.
Diamond markers indicate significant deviations (σGR > 1), and cases meeting log10 BML

UL < 1

(indicating stealth bias) have an added red cross.
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long-wavelength regime (also see Sect. 5.3.4). Within the geometrical-optics regime, we
do not notice any significant deviations for any parameter despite encountering several
cases with high values of log10 BML

UL , including values O(102).

It's also worth noting that in all cases where high biases are observed (σGR > 3),
we consistently find a high Bayes factor (log10 BML

UL > 1) in favour of microlensing. Con-
versely, there is only a single instance (marked with a red cross in the bottom-left panel)
where significant biases are present (1 < σGR < 3), but the Bayes factor remains notably
low (log10 BML

UL < 0.5). This suggests that events showing high deviations (σGR > 3) from
GR must also be analyzed for the presence of microlensing features before claiming any (er-
roneous) GR deviations. However, to establish this conclusion more firmly, we conduct a
more robust study using a population of microlensed signals, as detailed in Section 5.3.2.

5.3.2 Population of Microlensed Injections

To robustly analyze the effect of microlensing on tests of GR, we consider a population of
simulated microlensed signals (see Sect. 5.2.2 for details).

IMRCT

For the study of IMRCT on our microlensed signals, we only consider a subset of those
having total mass in the range 50 − 100 M⊙, to which our detectors are sensitive from
inspiral to ringdown phase of the coalescence (also called ``golden" binaries). This leaves
us with a total of ∼ 1.5× 104 signals.

Unlike our strategy in Sect 5.3.1, we do not perform parameter estimation for this
study. We save the computational expense of performing parameter estimation runs by
instead studying a quantity that closely resembles the deviation parameterQGR in IMRCT.
We realize from our study of GW150914-like injections in Sect. 5.3.1 that, for IMRCT, the
QGR value shows a positive correlation with the difference in the match between the
microlensed and unlensed WFs in the inspiral and post-inspiral phases, respectively. In
quantitative terms, we observe that the quantity:

∆MI
MR = |M(hI

UL, h
I
ML)−M(hMR

UL , h
MR
ML )|, (5.6)

where M represents match as defined in Eq. 2.20 , shows a positive Pearson correlation
value of around∼ 57% withQGR (see Fig. 5.5 ). Hence, we compute this quantity for our
population as a computationally more cost-effective alternative for estimating the trend
of the QGR value in IMRCT.
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Figure 5.5: Illustration of correlation between QGR and ∆MI
MR.

The results are shown in Fig. 5.6. In the top panel, we depict the quantity ∆MI
MR

in the parameter space of log10MLz and y. Both colour and size of the markers are pro-
portional to the strength of ∆MI

MR. In other words, markers with dark red colour and
relatively larger size represent regions where we expect IMRCT to be biased due to mi-
crolensing. We again observe that deviations from GR are prominent mainly in the wave-
dominated zone. This is more explicitly shown in bottom panel, where we plot the de-
viation parameter ∆MI

MR as a function of fML. We also colour the markers based on
their Bayes factor values log10 BML

UL , estimated using Eq. 2.33. We clearly see deviations to
increase sharply in the wave-dominated zone. In the geometrical-optics regime and the
transition region from the wave-dominated to geometrical-optics regime, we again notice
several cases having high log10 BML

UL values but with no significant ∆MI
MR value. These

results are consistent with our observations in the previous sections.

Parameterized test of GR

To get a population-wide behavior of deviations in the parameterized test of GR, we
choose 100 injections from our population of microlensed signals. To ensure a significant
number of events strongly favours microlensing, we restrict the injected impact parame-
ter value to be less than unity (i.e., y < 1). Furthermore, the selection employs Eq. 2.33
to determine log10 BML

UL . Since this estimation is not reliable at lower SNRs, we keep the
threshold on log10 BML

UL > 9 for the majority of events (∼ 50%) (Mishra et al. 2023b). The
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Figure 5.6: IMRCT results for a population of simulated microlensed signals using ∆MI
MR

(Eq. 5.6) as a proxy to quantify deviations in IMRCT. Top panel: Depicts∆MI
MR in the log10MLz−

y parameter space. Marker colour and size represent the strength of ∆MI
MR. Bottom panel: De-

picts ∆MI
MR as a function of fML. The colorbar represents Bayes factor values lnBML

UL estimated
using Eq. 2.33.

rest of the population corresponds to cases where microlensing is too weak to be correctly
identified in the model selection process. Such a population of weakly microlensed sig-
nals help us in investigating the possibility of stealth bias (Cornish et al. 2011; Vallisneri,
Michele 2012; Vitale & Del Pozzo 2014) in the context of microlensing - cases where mi-
crolensing itself is not large enough to be detectable but the systematic errors due to it
remain significant (i.e., larger than the statistical uncertainties in parameter estimation),
appearing as deviations from GR9.

As discussed in 5.2.1, we study the deviations in each of the four deviation parameters
(δχ̂0, δχ̂4, δα̂2, δβ̂2) separately. The results are plotted in Fig. 5.7 and Fig. 5.8, in a similar
fashion as in Sect. 5.3.1. Particularly, in Fig. 5.7, we plot the Gaussian sigma deviations in
the parameter space ofMLz−y. We again show the cases having σGR > 1with a diamond
marker for better visualization. As we can see, there are several cases that give significant
deviation from GR (σGR > 1). These include cases that lie in the modest regime in our
parameter space, i.e., having the characteristic impact parameter value of y ≈ 1 and the

9The term `stealth-bias' was coined by Cornish et al. (2011) in the context that GR templates can be
significantly biased even when there is no significant evidence for adopting an alternative theory of gravity.
In our work, we use this term to mean when microlensing effects lead to biases in tests of GR without being
detectable themselves.
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Figure 5.7: Same as Fig. 5.3, but for a population of microlensed injections as studied in Sect. 5.3.2.

lens massMLz < 100 M⊙.

Meanwhile, in Fig. 5.8, we plot it against the fML with colors representing the Bayes
factor log10 BML

UL values obtained via nested sampling. We also put an upper cap of 10 on
the colorbar to get a better visibility of Bayes factors around unity. We observed several
instances where σGR > 1 for all the parameters, including cases where it is even beyond
3σGR. However, we only saw two cases having σGR > 5, one for δχ̂4 and the other
for δα̂2. We clearly see that deviations increase pre-dominantly in the wave-dominated
zone and fall off as we go further into the long-wavelength regime. We do not see any
deviation from GR in the geometrical optics regime. These results are consistent with all
our previous observations.

To investigate the possibility of stealth bias, we specifically identify cases with signif-
icant deviations from GR (σGR > 1) but without a strong preference for the microlensing
model (log10 BML

UL < 1), marking them with a red cross. It is worth noting that although
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Figure 5.8: Same as Fig. 5.4, but for a population of microlensed injections as studied in Sect. 5.3.2.

several such cases are found, none reach the 'evidence'-level significance (σGR > 3). This
is because all cases with σGR > 3 also exhibit a strong preference for the microlensing
hypothesis over the null hypothesis (log10 BML

UL > 1).

5.3.3 Normality Test of Posterior Samples

In Sections 5.3.1 and 5.3.2, we conducted parameterized test analysis using Gaussian sigma
values to quantify deviations from General Relativity (GR). However, this approach im-
plicitly assumes that the posterior distributions are Gaussian. To assess the validity of
this assumption, we performed the Shapiro-Wilk test of normality Shapiro & Wilk (1965)
on our posterior samples of the deviation parameters, namely, δχ̂0, δχ̂4, δα̂2, δβ̂2. The
Shapiro-Wilk test is known to be one of the most powerful normality tests (Mendes &
Pala 2003; Keskin 2006; Razali et al. 2011). The test statistic, denoted as SW , tends to be
higher as the samples more closely resemble a Gaussian distribution and should approach
100% for a true Gaussian distribution.

In Fig. 5.9, we present the results of the Shapiro-Wilk test. The corresponding SNR
values of the events are displayed in the colorbar. The samples obtained for GW150914-
like injections in Sect. 5.3.1 exhibit a high degree of confidence in being Gaussian distri-
butions. With the exception of two cases, all other cases yield a statistic value above 95%
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Figure 5.9: Shapiro-Wilk normality test for the posterior samples of {δχ̂0, δχ̂4, δα̂2, δβ̂2}
in our injections. The colorbar shows the corresponding SNR of the events. Left-panel:
Shapiro-Wilk test statistic for samples obtained for GW150914-like injections in Sect. 5.3.1
(see also Figs. 5.3 and 5.4). Right-panel: Shapiro-Wilk test statistic for the samples ob-
tained for the study of the microlensed population in Sect. 5.3.2 (see also Figs. 5.7 and
5.8).

(i.e., SW > 95% for the majority of cases).

Building on this observation, we introduce a new metric p-index, denoted as P , to
quantify the nature of these distributions more robustly. It is defined as the value such
that P % of the samples in the distribution have values above P %. In mathematical
terms, for a distribution D = {di} of percentages, it can be expressed as:

P = arg min
x∈(0,100)

∣∣∣∣count({di : di > x})
count({di})

− x

100

∣∣∣∣ , (5.7)

where x denotes the possible percentage values, and `count' represents the number of
elements in the set inside the parentheses. This additional metric further reinforces our
confidence in the Gaussian nature of the data. Specifically, the Shapiro-Wilk test statistic
values for our deviation parameters, including δχ̂0, δχ̂4, δα̂2, and δβ̂2, yield P values of
98.5%, 96.8%, 95.0%, and 96.7%, respectively. For instance, this means that the statistic
values for the posterior distribution of δχ̂0 are above 98.5% for approximately 98.5% of
the cases, and so on.

In a similar fashion, the right-panel of Fig. 5.9 displays the test statistic results for
the samples obtained during the study of the microlensed population in Sect. 5.3.2. Here,
P values for our deviation parameters, δχ̂0, δχ̂4, δα̂2, and δβ̂2 are 88.0%, 93.8%, 84.7%,
and 82.7%, respectively.
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Figure 5.10: Gaussian fits to the distribution of σGR for the microlensed population injec-
tions plotted against the variable x ∈ {fML/flow, fML/favg., fML/fISCO, fML/fRD} for all
the deviation parameters {δχ̂0, δχ̂4, δα̂2, δβ̂2} (indicated on top of each panel). A dashed-
black line is included at x = 1 for reference, representing the characteristic frequency of
GW f c

GW which when comparable to fML gives rise to wave effects.

In conclusion, the assumption of Gaussianity holds well in our case, especially for
high SNR events. For GW150914-like injections, approximately 95% of the cases yielded
a statistic value exceeding 95%, while in the case of the population study, approximately
85% of the cases yielded a statistic value above 85%.

5.3.4 Investigating the correspondence between fML and fGW: A closer
perspective

As discussed in Section 2.2, the condition for wave effects is that fML ∼ fGW. In the
sections leading up to this point, we assumed that fGW ∈ (10, 1000) Hz, based on the
sensitivity of ground-based detectors. However, we can be more precise in defining the
characteristic frequency of GW, denoted as f c

GW, which when comparable to fML gives
rise to wave effects. This approach is possible because, for a given GW signal, we can ex-
plicitly determine the frequency rangewhere it exhibits significant power in the detectors.
Therefore, in this section, we leverage this knowledge to establish a closer correspondence
between fML and fGW.

The lower frequency cutoff typically used for GW data analysis is flow = 20 Hz,
below which the noise dramatically increases, especially due to seismic and thermal noise
sources (Abbott et al. 2016; Valdes et al. 2022). Next, the inspiral and post-inspiral sections
are typically demarcated using the frequency at the inner-most stable circular orbit fISCO
(Hanna et al. 2009; Abbott et al. 2021b), which is the same cutoff frequency we used for
IMRCT (see Sect. 5.2.1). We note that this demarcation is not the same as the demarcation
used for the parameterized test. Moreover, a rough estimate of the upper frequency of
a GW signal can be determined based on the ringdown frequency, fRD, associated with
the dominant quasi-normal mode (l = 2, m = 2, n = 0) (Hanna et al. 2009; Berti et al.
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Figure 5.11: The distribution of σGR is analyzed in the context of some selected values
of x for different deviation parameters. Leftmost two panels: x = fML/favg. is considered
with deviation parameters {δχ̂0, δχ̂4}. Rightmost two panels: For parameters {δα̂2, δβ̂2},
we choose x = fML/fISCO. A dashed-red line at x = 1 is included for reference.

2006). Additionally, one can define a signal's power-weighted average frequency, denoted
as favg., using the following equation:

favg. =

∫∞
−∞ f · |h̃(f)|2df∫∞
−∞ |h̃(f)|2df

. (5.8)

This power-weighted average frequency reflects where most of the signal power is con-
centrated. In the case of GW signals, the inspiral phase typically contributes the most
power. Consequently, we usually expect favg. < fISCO. Thus, a signal that spans a
sufficient number of cycles in the inspiral phase within the current detectors can be ef-
fectively divided into different phases of its evolution using these frequency markers:
flow < favg. < fISCO < fRD.

We consider posterior distributions of the deviation parameters, namely, δχ̂0, δχ̂4,
δα̂2, and δβ̂2, for the different injections studied in 5.3.2. Since the characteristic frequen-
cies mentioned above differ for each injection, we study the ratio of fML with these fre-
quencies, i.e., we examine the quantity: x : x ∈ {fML/flow, fML/favg., fML/fISCO, fML/fRD}.
Given that the condition for pronounced wave effects is fML ∼ f c

GW, we analyze the dis-
tribution of σGR as a function of x to determine which ratio results in a peak near 1.

In Fig. 5.10, we present the distribution of σGR for the microlensed population in-
jections against the variable x for all the deviation parameters (indicated on top of each
panel). To enhance clarity, we employ Gaussian fits to combine all four σGR − x distribu-
tions of a given deviation parameter into a single panel. An example illustrating the actual
σGR − x distribution is provided in Fig. 5.11 for specific cases. We also include a dashed-
black reference line at x = 1, representing the frequency where fML ∼ f c

GW. Given that,
for our injections, 1/fRD < 1/fISCO < 1/favg. < 1/flow, the Gaussian curves follow a
consistent trend. Specifically, the σGR−x distribution for x = fML/fRD occupies the left-
most position with its peak significantly below 1 (indicated by the red curves), while for
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x = fML/flow, it occupies the rightmost position in all panels with the peak significantly
above 1 (indicated by the blue curves). In other words, assuming f c

GW = flow would result
in an underestimation, whereas assuming f c

GW = fRD would lead to an overestimation.
Therefore, the fact that the curves of these ratios lie on different sides of unity implies that
the condition for microlensing in the case of a given GW signal can be more precisely de-
fined as when fML ∈ (flow, fRD), as opposed to the generic range of (10, 1000)Hz we
used earlier.

We also note that for the deviation parameters δχ̂0 and δχ̂4, the peak correspond-
ing to x = fML/favg. is closest to unity. This implies that these deviation parameters
exhibit the highest bias when fML ∼ f c

GW ∼ favg.. This outcome is expected because
these parameters primarily measure deviations from GR during the inspiral phase of the
signal. In Fig. 5.11, we explicitly depict the distribution of σGR for the x = fML/favg. ra-
tio for these two parameters in the leftmost two columns, where we observe an increase
in deviations around x ∼ 1. In contrast, for the deviation parameters δα̂2 and δβ̂2, the
peak corresponding to x = fML/fISCO is closest to unity, indicating that these deviation
parameters exhibit the highest bias when fML ∼ f c

GW ∼ fISCO. This can be explained
by the fact that these parameters primarily measure deviations from GR during the post-
inspiral phase of the signal. In Fig. 5.11, we explicitly display the distribution of σGR for
the x = fML/fISCO ratio for these two parameters in the rightmost two columns, where,
once again, we notice an increase in deviations around x ∼ 1.

In conclusion, we find that the condition for microlensing in the case of a given GW
signal can bemore precisely defined as when fML ∈ (flow, fRD), as opposed to the generic
range of (10, 1000) Hz we used earlier. We went further and tried to find even specific
conditions. For example, for parameters that measure deviations in the inspiral regime,
such as δχ̂0 and δχ̂4, the deviations increase when fML ∼ favg.. While for parameters
that measure deviations in the post-inspiral regime, such as δα̂2 and δβ̂2, the deviations
increase when fML ∼ fISCO.

5.4 Conclusion

In this study, we examined the potential impact of microlensing effects on tests of GR.
We adopted an isolated point-lens model for our study, covering a parameter space typ-
ically relevant for the ground-based detectors, i.e., MLz ∈ (1, 105) M⊙ and y ∈ (0.01, 3).
However, it is important to note that our findings and conclusions are expected to apply
broadly to any microlensing scenario, regardless of the specific parameter space, as we
relate the biases observed to the fundamental characteristic of gravitational lensing. Our
investigation centered on two theory-agnostic tests of GR: the inspiral-merger-ringdown
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consistency test (IMRCT) and the parameterized tests of GR. These tests allowed us to
explore deviations from GR across different evolutionary phases of a GW signal: inspiral,
intermediate, and merger-ringdown. We consider both high-SNR GW150914-like systems
and a population of microlensed signals similar to GWTC-3 with added microlensing ef-
fects.

Our findings lead to the following conclusions:

1. Microlensing can significantly bias tests of GR, with confidence levels even exceed-
ing 5σ. Fortunately, whenever there is a strong deviation from GR (σ > 3), there is
also a strong preference for microlensing over the null hypothesis that the signal is un-
lensed. In other words, we consistently observe log10 BML

UL > 1 in cases where σGR > 3,
preventing us from falsely claiming deviations from GR. However, it is important to
note that we do encounter scenarios in which deviations from GR are still significant
σGR ∈ (1, 3), but the Bayes factor isn't strong enough to confidently assert microlens-
ing (log10 BML

UL < 1). We refer to these situations as the stealth bias of microlensing in
tests of GR.

2. In general, we do not find any correlation between the deviations from GR and the
Bayes factor log10 BML

UL . Upon closer inspection, we demonstrate that the deviations
from GR occur primarily when interference effects are pronounced, i.e., when fGW ∼
1/td ≡ fML. These deviations intensify within the wave-dominated region of the
MLz − y parameter space, where fML ∈ (10, 103) Hz, and diminish as we move fur-
ther into the long-wavelength regime (fML > 103 Hz). In geometrical optics regime
(fML < 10Hz), where we can consider the resultant signal to be a trivial superposition
of two signals which differ only by a constant amplitude, a phase shift of π/2, and a
time-delay value smaller than the chirp time of the signal, we saw the least bias despite
noting several instances where the lensing Bayes factor strongly supported microlens-
ing (log10 BML

UL > 1).

3. We further refine the microlensing condition for a given GW signal, suggesting that
it is more precisely defined as when fML ∈∼ (flow, fRD), rather than the generic
(10, 1000) Hz range used in our study. Upon closer inspection, we observe that pa-
rameters quantifying deviations in the inspiral phase, such as δχ̂0 and δχ̂4, exhibit
increasing deviations when fML ∼ favg. (power-weighted average frequency). Con-
versely, for parameters assessing deviations in the post-inspiral phase, such as δα̂2

and δβ̂2, the deviations tend to increase when fML ∼ fISCO (frequency corresponding
to the innermost stable circular orbit).

Since the rate of expected microlensing events is significantly lower in comparison to
unlensed signals, the potential for microlensed signals to bias tests of GR at a population
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level is highly improbable. Nonetheless, as our study demonstrates, there is a possibility
that certain individual events in the future could exhibit notable deviations fromGR due to
microlensing effects. This would necessitate conducting dedicated microlensing analyses,
alongside investigations into other potential effects, before making any erroneous claims
of deviations from GR. Notably, these deviations in a few events could serve as indicators,
helping to prioritize them as potential microlensing candidates, as microlensing searches
are computationally expensive.

While our current study primarily focuses on demonstrating how microlensing ef-
fects can introduce deviations from GR, future research has the potential to explore ad-
ditional aspects. For example, one could investigate potential biases in microlensing
searches resulting from non-GR effects, addressing the possible degeneracy between non-
GR effects and microlensing. Furthermore, future studies might investigate the impact of
microlensed signals on population-level tests of GR, considering various compact dark
matter fractions and detector sensitivities. Lastly, a crucial avenue for future research
involves a detailed examination of cases leading to stealth biases of microlensing on tests
of GR.
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Chapter 6

Unraveling the Connection: Eccentric
Binary Black Holes and Microlensed
Signals

We investigate the potential biases in GW microlensing searches when the source is an
eccentric BBH system for the first time. Microlensing searches help us constrain compact
dark matter, whereas studying the eccentric population can shed light on the formation
mechanisms of BBHs. Despite the differences in their astrophysical origin, our research
demonstrates that microlensed templates outperform quasi-circular unlensed templates
in recovering eccentric WFs, where we utilize an isolated point-mass lens model for mi-
crolensing throughout our analysis. Using reliable eccentric WFs derived from numerical
relativity simulations, we first demonstrate how eccentric signals can significantly bias
microlensing hypotheses over unlensed scenarios. Our investigation involves compre-
hensive analyses, including population-wide assessments and injection studies employ-
ing the TEOBResumS WF model. Both the FF and Bayesian analyses, which encompass
parameter estimation and Bayesian model selection, indicate that the preference for mi-
crolensing recoveries increases with higher eccentricities, longer WFs, and higher SNR
values. Population-wide studies consistently favor microlensing templates over unlensed
templates, particularly for eccentricities exceeding 0.2. Bayesian analysis shows that the
Bayes factor in evidence of microlensing over unlensed hypothesis can even exceed 105

for low mass binaries (< 30 M⊙) at eccentricity of ∼ 0.3. Lastly, by conducting eccentric
injections and recoveries using TEOBResumS, we demonstrate the potential to break the
degeneracy and resolve biases when eccentricity is considered as a free parameter in the
recovery process. This underscores the importance of eccentricity analysis before claim-
ing any erroneous microlensing effects. These findings carry significant implications for
the future of GW detectors, including third-generation instruments like CE and ET, as well
as space-based detectors like DECIGO.
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6.1 Introduction

In this chapter, we demonstrate, for the first time, how the presence of eccentricity can
bias the search for microlensing signatures in the GW signals. We focus on the GW
signals expected to be detected by the Advanced LIGO (Aasi et al. 2015) and Virgo de-
tectors (Acernese et al. 2015) at the current detector sensitivities. The search for mi-
crolensing in the ground-based sensitivity band is particularly important as it provides
an unparalleled opportunity to constrain the compact dark matter fraction in the mass
range ∼ 10 − 105 M⊙ (e.g., Basak et al. 2022). This region is currently not well con-
strained 1.

The observations made by the LVK collaboration during the first three observation
runs have revealed a diverse population of BBHs, BNSs, and NS-BH systems. These detec-
tions have provided invaluable data for studying the astrophysical processes involved in
the formation, evolution, and ultimatemerger of these compact object binaries, paving the
way for further advancements in our understanding of the Universe (The LIGO Scientific
Collaboration et al. 2023b). All these signals are mostly well modeled by quasi-circular
templates (Abbott et al. 2019d), though four events have been reported to show support for
non-zero eccentricity (Romero-Shaw et al. 2022). This indicates that these systems likely
underwent sufficient circularization by the time their GWs entered the sensitivity band of
the ground-based detectors (Peters 1964). While negligible eccentricities are expected in
binaries formed through isolated channels (Mapelli 2021), there are alternative formation
mechanisms that can result in significant eccentricities (e ≳ 0.5 at 10 Hz) at small bi-
nary separations (Zevin et al. 2019). Examples include binary formation from primordial
black holes (Cholis et al. 2016), dynamical interactions in dense stellar environments (Wen
2003), and the evolution of isolated triple systems (Antonini et al. 2014).

The effects arising from non-zero eccentricity will become increasingly significant as
we probe the early stages of binary evolution or enhance the sensitivity of detectors. This
leads us to anticipate the detection of eccentric GW signals with future detectors such as
Cosmic Explorer (CE) (Reitze et al. 2019), Einstein Telescope (ET) (Maggiore et al. 2020),
and deci-Hertz observatories (Kawamura et al. 2008; Luo et al. 2016). Although the true
rate of microlensed events is still unknown, we find a striking resemblance between ec-
centric and microlensed GW signals, despite the differences in their astrophysical origin.
Consequently, it becomes important to understand if the current microlensing searches
by the LVK collaboration can be biased due to the presence of eccentricity in the sig-
nal. Understanding and disentangling these effects is crucial for accurate astrophysical

1We note that GWs also put an indirect constraint on compact dark matter fraction using the observed
merger rate density.
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interpretations and for distinguishing genuine microlensed events from eccentric binary
sources. Our findings shed light on the challenges associated with identifying microlens-
ing events and underscore the importance of careful analysis when interpreting GW ob-
servations. Furthermore, we employ Bayesian analysis to investigate eccentric injections
and conduct a population-wide analysis for a comprehensive understanding. As a result,
this study enables us to make valuable predictions, including the parameter space region
where the degeneracy between the two effects is most pronounced.

Throughout this chapter, we use the publicly available Bayesian inference library
Bilby (Ashton et al. 2019, 2020) for performing parameter estimation runs. Specifically,
we use Dynesty (Speagle 2020) nested sampler with the `acceptance-walk' method for
the Markov-Chain Monto-Carlo (MCMC) evolution as implemented in Bilby, along with
the sampler settings of nlive= 1024, n-accept= 60 and n-parallel= 2 per injection. Un-
less otherwise noted, we use the WF approximant IMRPhenomXPHM for quasi-circular re-
coveries with the likelihood evaluation set to flow = 20 Hz, which is also the reference
frequency.

6.2 Results

6.2.1 Numerical Relativity Injections

In this subsection, we examine the potential bias in microlensing searches due to the
presence of a non-zero eccentricity in BBH GW signals. We perform a model comparison
study between the unlensed and the microlensed hypotheses for some ideal test cases by
considering three pairs of quasi-circular and eccentric WFs generated using numerical

Table 6.1: Model comparison analysis between the unlensed (UL) and the microlensed
(ML) hypotheses for numerical relativity injections corresponding to quasi-circular (or
non-eccentric) and eccentric signals. The source binary considered is a non-spinning
BBH with a total mass ofMtot = 80 M⊙ and mass ratio q ∈ {1, 2, 3}.

q Orbit type log10 BML
noise log10 BUL

noise log10 B
QCML
QCUL Interpretation1 log10MLz JS(MLz)2 y JS(y)2

1 Quasi-circular 3501.18 3501.78 -0.6 Negative −0.17+0.85
−0.71 0.57 3.78+1.1

−2.34 0.07

Eccentric 3442.59 3437.88 4.7 Very strong / Decisive 2.19+0.09
−0.12 0.76 4.38+0.83

−0.54 0.55

2 Quasi-circular 2759.26 2759.73 -0.5 Negative −0.23+1.06
−0.67 0.56 3.78+1.09

−2.35 0.08

Eccentric 2702.71 2697.11 5.6 Very strong / Decisive 2.0+0.09
−0.13 0.76 3.97+0.76

−0.49 0.59

3 Quasi-circular 1990.65 1991.07 -0.4 Negative −0.13+1.08
−0.76 0.54 3.8+1.08

−2.42 0.07

Eccentric 1934.17 1932.79 1.4 Strong 1.93+0.26
−0.34 0.70 4.51+0.97

−0.74 0.50
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Figure 6.1: Recovered 1D marginalized posterior densities for the microlens parameters
MLz and y for NR injections corresponding to (a) quasi-circular and (b) eccentric signals.
The source binary considered is a non-spinning BBH with {Mtot/M⊙, q} = {80, 1} (see
Table 6.1).

relativity (NR) simulations and obtained from the Simulating eXtreme Spacetimes (SXS)
catalogue Boyle et al. (2019). The NR injections studied are non-spinning, having a (red-
shifted) total mass of 80 M⊙, with mass ratios q = {1, 2, 3}. The binaries are observed
face-on at a luminosity distance of 400Mpc, having signal-to-noise ratios≳ 100 (Narayan
et al. 2023). The eccentric WFs have eccentricities e ∼ 0.1 at 17 Hz for the total mass of
80 M⊙. However, we note that in subsequent sections, we adopt a different reference
frequency for defining the eccentricity.

The results of our model comparison study are summarized in Table 6.1. Notably, the
recovered Bayes factor log10 BML

UL for all eccentric injections are consistently above unity,
strongly supporting the microlensing hypothesis. In contrast, for all quasi-circular cases,
we observe log10 BML

UL < 0, decisively rejecting the microlens hypothesis, as expected.
Furthermore, the 1D marginalized posteriors of the recovered microlens parameters for
eccentric cases are well recovered, exhibiting unimodal distributions with small standard
deviations and peaks at log10MLz ≈ 2M⊙ and y ≈ 4. This observation is corroborated by
a comparison between the prior distributions and the recovered posterior distributions,
both via visual inspection (Fig. 6.1) and by evaluating the Jensen-Shannon (JS) divergence
values (Lin (1991); check columns eight and ten in Table 6.1). For example, see the recov-
ered median values with 1-sigma uncertainty for the microlens parameters in Table 6.1.
Additionally, Fig. 6.1 proves a visual illustration of the 1D marginalized posteriors of the
recovered microlens parameters for both quasi-circular and eccentric cases for q = 1 case.
In the quasi-circular case (left panel), the posterior for the impact parameter follows the
prior (dashed black lines), while the lens mass favors a value towards the lower bound set
by the prior. Conversely, for the eccentric case (right panel), we clearly see sharp peaks
for both log10MLz and y around values 2.2 and 4.4, respectively. Moreover, the JS di-
vergence values for the recoveries of y in the case of eccentric injections are consistently
greater than 0.5, indicating substantial information gain. In contrast, for quasi-circular
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WFs, the JS values for y consistently remain below 0.1, indicating that the posteriors are
uninformative and closely resemble our prior distribution, as mentioned earlier. This be-
havior aligns with expectations for typical unlensed BBH signals. Similarly, the JS values
for log10MLz are consistently higher in the case of eccentric injections compared to the
quasi-circular cases by a margin of ∼ 0.2.

In the case of eccentric injections, we observe that the evidence for microlensing,
log10 B

QCML
QCUL , does not exhibit a consistent trend with changes in the mass ratio q. For

instance, it initially increases from 4.7 for q = 1 to 5.6 for q = 2. However, there is a
notable and significant drop to 1.4 for the q = 3 case. This behavior can be attributed
to the fact that the q = 3 case had the lowest SNR among all cases since SNR decreases
monotonically with increasing asymmetry in component masses (high mass ratios) when
the distance and the binary mass are held fixed. Consequently, the Bayes factors support-
ing the presence of a signal against noise, i.e., log10 BUL

noise and log10 BML
noise, individually

decrease as the mass ratio increases (e.g., see the third and fourth columns in Table 6.1).
This reduction can subsequently lead to a decrease in log10 B

QCML
QCUL (observed in Eq. 2.33).

The findings in this section highlight the presence of degeneracies between the mi-
crolensing and eccentric effects, emphasizing the need for a more comprehensive inves-
tigation, which are presented in the subsequent sections.

6.2.2 Population Study

To understand the broader impact of eccentricity on microlensing searches, we study a
population of eccentric signals. We generate mock GW data of around ∼ 2 × 104 non-
spinning eccentric BBH signals using TEOBResumS (Nagar et al. 2018, 2023) WF model,
where BBH parameters are derived from the population model constructed using the
GWTC-3 catalogue (The LIGO Scientific Collaboration et al. 2023b). We put an observed
network SNR threshold of 8 when using the eccentric templates for recovery in the joint
network of LIGO−Virgo detectors. The detector noise PSDs used correspond to the target
O4 sensitivities. The population model provides a fit to the distribution of observed pa-
rameters, particularly masses, spin magnitudes, spin tilts, and the redshift distribution of
the BBH mergers. All other BBH parameters are sampled uniformly from their respective
domains. The eccentricity of the signals is defined at the same point in the evolution of a
binary by fixing the dimensionless frequency to ∼ 0.003 at apastron, equivalent to 10 Hz
for a 60 M⊙ binary. We use a log-uniform prior in eccentricity, e ∈ (0.01, 0.5). Further-
more, we assume the Madau-Dickison profile for the merger rate density in the universe,
giving the source-redshift density model as given in (Madau 1997; Fishbach et al. 2018).

We aim to study the comparison between the unlensed and the microlensWFmodels
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Figure 6.2: Illustration of the preference for microlensed templates over unlensed tem-
plates in the recovery of a population of eccentric signals (Sect. 6.2.2). The Bayes factors
of microlensed vs. unlensed hypotheses, lnBML

UL , are shown in the parameter space of ec-
centricity and mass ratio. These values have been computed using Eq. 2.33, as indicated
in the colorbar label. Both color and size of the markers are associated with the deviation
of Bayes factors from zero, with red indicating a preference for unlensed templates over
microlensed templates, while blue signifies the opposite preference.

for the recoveries of our simulated eccentric signals. Since computing Bayes factor values
(e.g., using nested sampling algorithm) is usually computationally expensive, we utilize
Eq. 2.33 to compare the two hypotheses, unlensed and microlensed, for our simulated
eccentric signals. Specifically, we compare lnBML

Ecc and lnBUL
Ecc, which compares the two

models against the true eccentric WF model. One can write,

lnBML
UL = lnBML

Ecc − lnBUL
Ecc =

1

2
(FF 2

ML − FF 2
UL)ρ

2
Ecc, (6.1)

whereFFUL (FFML) are the FF valueswhen the recoverymodel is unlensed (microlensed),
and ρEcc depicts the true optimal SNR of the eccentric signal. A positive value of lnBML

UL
suggests the microlens model is preferred over the unlensed hypothesis.
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Figure 6.3: Variation in the Bayes factors of microlensed vs. unlensed hypotheses, lnBML
UL ,

with the binary mass, Mtot, for our population of eccentric signals (Sect. 6.2.2). The col-
orbar represents eccentricity.

In Fig. 6.2, we plot the quantity lnBML
UL for our simulated eccentric signals. We il-

lustrate the population in the parameter space of eccentricity and mass-ratio, while the
colorbar shows the lnBML

UL values. A blue marker implies the preference for the microlens
model over the unlensed model in recovering the eccentric signal (red colored markers
depict the opposite scenario). Moreover, the size of the circular markers is proportional
to the absolute value of lnBML

UL , so that the dark-colored markers (either blue or red) are
also larger in size, showing a clear distinction between the interesting cases of both the
models. The markers are plotted in such a manner that red markers are always on top
so that they are not missed visually due to their low values (light color and size). One
can clearly see that in most of the parameter space, especially when eccentricities are
significant (e ≳ 0.1), the microlensed templates fit better than the unlensed templates
(blue-colored markers). In fact, for larger eccentricities, say e ≳ 0.2, the microlens model
is almost always preferred over the unlensed model.
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Figure 6.4: Bias inmicrolensing searches due to the presence of eccentricity. The variation
in the Bayes factors of (quasi-circular, or QC) microlensed vs. QC unlensed hypotheses,
lnBQCMLQCUL, is shown a function of eccentricity (e), binary mass (Mtot), and mass-
ratio (q). The Bayes factors are computed using the WF approximant IMRPhenomXPHM,
which is a fully processingWFmodel utilizing all 15 parameters in the model for a typical
quasi-circular BBH system.

This observation can be further understood from the fact that the microlens model
has two additional parameters as discussed in Sect. 2.2.1. Consequently, a better fit is
expected. However, it is important to understand that in many cases, we find lnBML

UL >

1, implying that fit may be good enough to overcome Occam’s penalty in order to be
significantly favored over unlensed model during microlensing searches.

Furthermore, upon studying the distribution of population parameters, we do not
find any significant correlation between lnBML

UL with either the inclination or the mass-
ratios. However, we do see a slight anti-correlation of lnBML

UL with the total binary
mass, for instances where the microlens model is preferred over the unlensed model
(lnBML

UL > 0). This is illustrated in Fig. 6.3, where we show lnBML
UL against the binary mass

for cases where lnBML
UL > 0. This suggests that, for a given eccentricity, the microlensing

signatures are able to mimic modulations in eccentricWFs better with increasing duration
of the signal. This further suggests that the two effects, eccentricity and microlensing, are
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Figure 6.5: Same as Fig. 6.4, but utilizing the WF approximant TEOBResumS, where we
keep eccentricity at zero in the recovery. This makes it an 11D model for a quasi-circular
aligned-spin BBH system.

not orthogonal as they share some overlapping features.

6.2.3 Eccentric BBH Injection Study using TEOBResumS

Microlensing searches using Quasi-CircularWFmodels: IMRPhenomXPHM and TEOBRe-
sumS with zero eccentricity

We resort back to the nested sampling algorithm to estimate Bayes factors and parameters.
Similar to the setup used in Sect. 6.2.2, we use TEOBResumS (Nagar et al. 2018, 2023) WF
model for generating non-spinning eccentric BBH signals. Specifically, we select three
distinct binary mass values Mtot ∈ {30, 60, 90} M⊙, two mass ratio values q ∈ {1, 3},
and six values for eccentricity e ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, with zero eccentricity injec-
tions chosen for reference. Eccentricity is defined at a dimensionless frequency of∼ 0.003

at apastron, as in the previous section. Our choice of extrinsic parameters closely matches
those of GW150914, except for the luminosity distance, which is adjusted to achieve an
optimal network SNR of 30 when these eccentric signals are injected into the joint LIGO-
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Figure 6.6: Recovered 1D marginalized posterior densities for the microlens parameters
MLz and y for TEOBResumS injections corresponding to a non-spinning equal mass BBH
of 30 M⊙ for (a) e = 0, (b) e = 0.3, and (c) e = 0.4.

Virgo network. This assumes the target O4 sensitivities as our model for the PSD. For the
recovery process, motivated by real microlensing searches, we only employ quasi-circular
(QC)WFmodels. We initially use IMRPhenomXPHM, a precessing model that uses all 15 pa-
rameters to model a typical QC BBH signal. The injected signals and the recovery analysis
employ the same mode contents of (l, |m|) = {(2, 2), (2, 1), (3, 2), (3, 3), (4, 4)}, repre-
senting all available modes in IMRPhenomXPHM. However, to explicitly account for possible
WF systematics between TEOBResumS and IMRPhenomXPHM, we later also analyze the bias
in microlensing searches using the aligned-spin TEOBResumS WF model while keeping
the eccentricity to zero. Moreover, we set the lower frequency limit for likelihood eval-
uation to flow = 20 Hz for the 30 M⊙ binary mass case and 15 Hz for the other two
heavier binary mass cases. This adjustment aims to increase the signal duration and gen-
erate more cycles, particularly for cases with higher eccentricity where signal duration
decreases drastically.

We recover the signals using unlensed and microlensed hypotheses, HUL and HML,
and compare the two models using Bayes factor values. The results are plotted in Fig. 6.4,
where we show log10 B

QCML
QCUL against the injected eccentricity values, for different binary

masses and mass-ratio considered. The circular markers represent the case where q = 1,
while diamond-shaped markers depict q = 3 cases. The dashed black and red lines il-
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Figure 6.7: Breaking the degeneracy between eccentricity andmicrolensing and resolving
bias in microlensing searches by incorporating eccentricity as a parameter in the recov-
ery process using TEOBResumS WF model. The Bayes factor log10 BEccUL

QCML represents the
evidence in favor of eccentricity vs. microlensing.

lustrate the threshold for substantial and strong evidence according to the Jefferey's scale
(Deutsch 1999). It is evident from the plot that the evidence in favor of the microlens
hypothesis over the unlens hypothesis increases almost monotonically as eccentricity in-
creases while keeping other parameters fixed. For Mtot = 30 M⊙ case, the evidence in
favour of microlensing becomes strong from e = 0.3 onwards, while for the other two
cases of binary masses (60 and 90), the evidence becomes strong from e = 0.4 onwards.
Furthermore, for a given eccentricity, when log10 B

QCML
QCUL is significant, it is always more

for smaller mass binary relative to the heavier binaries. However, similar to our observa-
tion in sub-sections 6.2.1 and 6.2.2, we find that the effect of mass-ratio is non-linear and
does not show any coherent trend. For high eccentricities (> 0.3) and low binary mass
(≲ 30 M⊙), we find that log10 B

QCML
QCUL values can even exceed 5, which is huge. We also

note a peculiar trend shown by the 30 M⊙ binary between eccentricity values of 0.2 and
0.4, which is the only case where we see the non-monotonic behavior of log10 B

QCML
QCUL with

eccentricity. We see a sudden spike of log10 B
QCML
QCUL for e = 0.3, which is slightly more

than the value at e = 0.4. We did various tests to confirm this peculiar behavior is indeed

118



CHAPTER 6. ECCENTRICITY VS MICROLENSING

a physical effect and not an artefact. We changed the prior ranges and their densities, but
the observation was similar. We suspect this non-monotonic behavior of log10 B

QCML
QCUL in a

few cases, and the non-linearity of log10 B
QCML
QCUL with the mass-ratios can be dependent in

a non-linear fashion with the source considered. We leave further investigation to future
studies.

In Fig. 6.6, we show the recoveries of the 1D marginalized posteriors for the mi-
crolens parameters for a few cases (solid red colored lines). Specifically, we consider
the {Mtot, q} = {30, 1} case for three eccentricity values e ∈ {0, 0.3, 0.4}. Similar
to Fig. 6.1, we find no interesting signatures of microlensing for the non-eccentric case,
which is expected. However, for the other two eccentric cases, we see the well-converged
recoveries forMLz and y, strongly deviating from the prior density (dashed black colored
lines). We also notice that in most cases studied in this subsection, the recoveries of y
prefer a lower value as the eccentricity increases (compare, for example, recoveries of y
in Figures 6.6b and 6.6c). We can see that the tail of PDF of (y) can go as low as 10−3,
which is orders of magnitude lower than the current lower limit used in the search for
microlensing in the LIGO Scientific collaboration (Abbott, R. and others 2021; The LIGO
Scientific Collaboration et al. 2023a).

In Fig. 6.5, we replicate the computations performed in Fig. 6.4, but this time by
employing aligned-spin TEOBResumS WFs for the recovery, while keeping eccentricity
zero. The parameter estimation runs using TEOBResumS follow a methodology similar to
that described in O'Shea & Kumar (2023) but employ a different implementation provided
by GWEAT2. This analysis serves to confirm whether biases in microlensing searches, as
depicted in Figure 6.5, result from WF systematics or are attributed to eccentricity. Our
observations mostly align with those in Figure 6.5. We note that for the case with a binary
total mass of 30 M⊙, the evidence in favor of microlensing becomes strong from e = 0.3

onwards. Conversely, for the other two cases with binarymasses (60 and 90), the evidence
becomes strong from e = 0.4 onwards. However, it's important to mention that the Bayes
factor values differ between the two figures due to their different parameter spaces. While
IMRPhenomXPHM is a precessing model, TEOBResumS is an aligned spin model. The trend
remains consistent with the previous plot up to e = 0.4, where we observe a consistent
increase in the preference for the microlensed hypothesis for any given mass and mass
ratio. However, the sudden drop in log10 B

QCML
QCUL for the case with e = 0.5 compared

to e = 0.4 for most cases is not well understood, and further investigation is needed to
determine the physical causes leading to such behavior.

2Gravitational Wave Eccentricity Analysis Tools, a Python package developed by the author of this
thesis.
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Breaking the degeneracy: Eccentric recoveries using TEOBResumS WF model

In the preceding sections, we illustrated how the presence of eccentricity in the data can
bias microlensing searches. Now, we will demonstrate how to overcome these biases by
performing eccentric recoveries. This involves incorporating the eccentricity parameter
into the parameter estimation process as well, which is achieved by utilizing the TEOBRe-
sumS WF model as implemented in GWEAT.

In Fig. 6.7, we directly compare the eccentric and microlensed models by plotting
the Bayes factor values log10 BEccUL

QCML, representing the Bayes factor for the preference of
the Eccentric unlensed hypothesis over the microlensing hypothesis. We observe that the
degeneracy is effectively resolved when performing eccentric recoveries. Specifically,
starting from e = 0.1, strong evidence in favor of eccentricity is evident in all cases ex-
cept for the Mtot = 90 M⊙ case, where it becomes strong from e = 0.2. From Figs. 6.4
and 6.5, we observe that biases in our microlensing searches emerge when eccentricity
reaches e = 0.3 for the lowest mass and e = 0.4 for the two heavier masses. In these
scenarios, log10 BEccUL

QCML consistently exceeds 10 for all cases with e ≥ 0.3. Thus, we can
confidently assert that employing an eccentricity analysis effectively eliminates the de-
generacy, preventing erroneous claims of microlensing. However, future studies should
conduct a more comprehensive analysis considering the effects of SNR and noise. It is
also important to note that currently, no WF model incorporates both eccentricity and
precession. Thus, future studies can investigate possible biases in microlensing searches
when the true signal originates from a precessing eccentric BBH system. In such cases, the
possibility for the preference of a model with precession and microlensing may improve
over a model with only aligned spin and eccentricity.

6.3 Conclusion

In this chapter, we investigated how eccentricity can affect microlensing searches. Start-
ingwith themost reliable eccentricWFs fromnumerical relativity simulations, we showed
in 6.2.1 how the eccentric signals can strongly favor the microlens hypothesis over the un-
lensed hypothesis. We later employed population-wide investigation and several injection
studies in sections 6.2.2 and 6.2.3 using TEOBResumSWFmodel to have amore comprehen-
sive understanding of the biases in microlensing searches. Lastly, we also showed how the
biases can be resolved by breaking the degeneracy between eccentricity and microlensing
by including eccentricity in the recovery process, where we employed the TEOBResumS

WF model as implemented in GWEAT.

Based on our study, we arrive at the following conclusion:
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1. Our study suggests that there is a significant degeneracy between eccentricity and
microlensing, enough to falsely classify an event as a microlensed event if eccentricity
is not accounted for. The Bayes factor log10 BML

UL in favor of the microlensed hypothesis
compared to the unlensed hypothesis can be high by several orders of magnitude. For
example, log10 BML

UL can even exceed a value of 5 for low mass binaries (< 30 M⊙) at
eccentricity of ∼ 0.3.

2. Both the FF and Bayesian analyses, encompassing parameter estimation and Bayesian
model selection, show that the preference for microlensing recoveries over the un-
lensed recoveries intensifies as the strength of eccentric features increases in the data,
which correlates with: (i) higher eccentricities, (ii) longer WFs, and (iii) high SNR val-
ues.

3. Population study shows that microlensing templates are almost always preferred over
unlensed templates, especially for e ≳ 0.2.

4. Interestingly, the PDF of the recovered impact parameter y can even take values outside
the current priors used in the microlensing searches, which is y ∈ (0.1, 3). This prior
is often employed because a low value y < 0.1 is improbable from a geometric point
of view, while a large value y > 3 leads to very small microlensing effects. However,
we noticed that when eccentricities are large enough, the tail of the PDF of y can have
significant values in the range y ∈ (0.001, 0.1). Meanwhile, when SNR values are
high, the tail of the recovered densities can even go as high as y ∼ 7.

5. Lastly, we demonstrated that the bias in the microlensing search due to the presence
of eccentricity can be resolved by conducting an eccentricity analysis to confidently
eliminate the degeneracy. This underscores the need for such analyses before making
any claims of microlensing. We find that the Bayes factors in favour of eccentric-
ity are significantly higher than those of microlensing for almost all the eccentricity
values considered in our analyses. However, future studies should conduct a more
comprehensive analysis by considering the effects of SNR and noise. Additionally, it
is important to note that currently, there are no faithful WF model incorporating both
eccentricity and precession. Thus, future studies can investigate possible biases in mi-
crolensing searches when the true signal originates from a precessing eccentric BBH
system. In such cases, the possibility for the preference of a model with precession and
microlensing may improve over a model with only aligned spin and eccentricity.

Our study strongly suggests that any event showing strong evidence of microlensing
should also be analysed using an eccentric WF model in order to break the degeneracy.
Since the effects due to a non-zero eccentricity will become important as we probe the
early stages of a binary evolution or as the sensitivities of detectors increase, our study
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holds great significance for future detectors such as 3G detectors like CE and ET or
space-based detectors like DECIGO.
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Chapter 7

Concluding Remarks and Future
Directions

We live on an island surrounded by a
sea of ignorance. As our island of
knowledge grows, so does the shore of
our ignorance.

John Archibald Wheeler

In this thesis, we investigated the impact of wave-optics effects (microlensing) in
gravitational lensing (GL) of gravitational waves (GWs) originating from binary black hole
mergers. We addressed several key questions, including: When do frequency-dependent
modulations due to microlensing become noticeable? Which source parameters are sus-
ceptible to these modulations? How do microlenses behave when present within a strong
lens? What impact do they have on the information extracted fromGW signals? Can they
introduce biases in other GW analyses, such as tests of general relativity (GR)? We also
explored the prospects for detecting microlensing effects and examined the challenges
associated with model comparison studies. Some of these questions were explored for the
first time in the existing literature.

In the first couple of chapters, we laid out the foundation for the subsequent chapters
by covering the basics of GL, including wave-optics effects, and GW data analysis relevant
to our work. In the third chapter, we employed an isolated point-mass lens model of mi-
crolensing to study the impact of frequency-dependent modulations on the detection and
parameter estimation of GWs, explore the feasibility of confidently detecting these lens-
ing features, and investigate the population characteristics of such microlensed signals.
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Chapter 4 extended our exploration to more realistic scenarios of microlensing where a
microlens, or a population of stellar-mass microlenses, embedded within lensing galaxies
can affect strongly lensed GWs. In Chapter 5, we delved into the critical implications of
neglecting microlensing in GW data analysis, particularly in the context of its potential
to bias tests of GR. Finally, Chapter 6 ventured into the intriguing possibility that other
atypical physical effects, such as eccentric binaries, could introduce biases in microlensing
searches. This chapter sheds light on the challenges associated with model comparison
studies.

Our research has laid the groundwork for further analysis in several areas. In Chap-
ter 3, we mainly focused on zero-noise non-spinning microlensed systems to study the
biases in inferring BBH parameters. A logical extension would involve studying biases in
the presence of Gaussian or real noise, or exploring biases for precessing microlensed sig-
nals. Moreover, while studying a population of microlensed signals and predicted regions
in the lensing parameter space that are more likely to be detected as well as correctly
identified as microlensed, one could incorporate the Occam's factor term using Fisher-
Information matrix formalism, which we omitted for simplicity. Chapter 4 highlighted
the need for more robust exploration of high macro-magnification cases, particularly due
to the observed potential for high mismatch values exceeding 5%. There's also room for
refinement and increased efficiency in the methodology for computing amplification fac-
tors, especially for saddle-point images. This extends to exploring more efficient methods
for computing amplification factors for both minima and saddle-point images. Addition-
ally, a more statistical and robust examination of the effect of microlensing on strong
lensing searches is recommended, as discussed in Chapter 5. This would provide a more
accurate assessment of the implications. In the context of Chapter 5, there are opportu-
nities to study deviations in general relativity due to microlensing effects, accounting for
Gaussian or real noise. Furthermore, exploring the possibilities of non-GR effects affect-
ingmicrolensing and assessing their likelihood, considering the high accuracy of GR tests,
is a valuable avenue for further research. In alignment with Chapter 6, researchers may
consider investigating how other unconventional physical effects, such as those originat-
ing from overlapping signals, waveform systematics (e.g., due to lack of faithful precessing
eccentric waveforms), and precession, could potentially introduce biases in microlens-
ing searches. Furthermore, the role of noise systematics, especially the non-Gaussianity
present in real noise, should be further explored in the context of microlensing searches.

Traditionally, microlensing searches have predominantly relied on isolated point
mass lens models, primarily because analytical solutions are available for simple lens sys-
tems. However, our work emphasizes the need for developing waveform models that
can accommodate more realistic scenarios where microlenses are embedded within a
macrolens. This presents a challenging problem, as the typical generation time for ampli-
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fication factors in such scenarios is O(10 s), whereas for practical parameter estimation
or evidence computation, an evaluation time of O(10−3 s) is usually needed to complete
the analysis within the reasonable time frame, such as a single day.

In conclusion, this thesis establishes the importance of microlensing in GW data
analysis and keeps it alongside other astrophysical viable atypical physical effects, such
as eccentricity and precession. Our research has revealed that neglectingmicrolensing can
introduce significant biases in parameter inferences, potentially undermine fundamental
tests such as those assessing the validity of general relativity. As we move forward, it is
imperative to develop advancedwaveformmodels capable of handling realistic microlens-
ing scenarios, a challenge that holds the key to a better understanding of the nature of
dark matter and, hence, the universe. By addressing these challenges, we can advance our
understanding of the cosmos and refine the precision of GW astronomy.
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Appendix A

Wave-optics effects in Gravitational
Lensing of Gravitational Waves:
Technical derivations and assumptions

A.1 Lensing Amplification Factor derivation

A.1.1 Basic Equations

We consider GWs propagating under the gravitational potential of a lens object. The
background metric is given by1 (Hossenfelder 2006; Takahashi & Nakamura 2003),

ds2 = −(1− 2U)dt2 + (1− 2U)drrr2 ≡ g(B)
µν dx

µdxν , (A.1)

where U(r) is the gravitational potential of the lens object, satisfying |U(r)| ≪ 1 (weak
field regime). Let us consider linear perturbations hµν to the background metric g(B)

µν as

gµν = g(B)
µν + hµν . (A.2)

Adopting the transverse traceless Lorentz gauge condition of hνµ;ν = 0 and hµµ = 0 (where
semicolon represents the covariant derivative), and assuming that the wavelength of the
propagating GW is much smaller than the typical radius of the background curvature
(which holds well in the weak-field regime and for the sensitivity band of ground-based
detectors), we arrive at

2hµν = 0. (A.3)

1we work in natural units, unless otherwise noted.
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Using the eikonal approximation, the GW signal can be expressed as

hµν = ϕeµν , (A.4)

where ϕ is the scalar amplitude and eµν is the polarisation tensor satisfying the conditions
eµµ = 0 and eµνeµν = 2. Since eµµ is parallel-transported along the null-geodesic, the effect
on eµµ due to lensing is of the order U(≪ 1)2. Thus, we treat the scalar wave ϕ, instead of
the GW hµν , propagating through the curved space-time, described by the equation:

∂µ

(√
−g(B)

µν )g(B)µν∂νϕ

)
= 0. (A.5)

For the scalar wave in the frequency domain ϕ̃(ω,rrr), the above equation A.5 can be ex-
pressed as,

(∇2 + ω2)ϕ̃ = 4ω2Uϕ̃, (A.6)

where we made use of the metric in Eq. A.1.

A.1.2 Kirchhoff's Diffraction Integral

The complex disturbance ϕ̃ at an observation point in space can be calculated using
Green's theorem, which states (Goodman 2005):
Let ϕ̃(P ) andG(P ) be two complex-valued functions of position, and let S be a closed sur-
face surrounding a volume V . If ϕ̃(P ),G(P ), and their first and second partial derivatives
are single-valued and continuous within and on S, then we have∫∫∫

V

(ϕ̃∇2G−G∇2ϕ̃)dV =

∫∫
S

(
ϕ̃
∂G

∂n
−G

∂ϕ̃

∂n

)
dS, (A.7)

where dV and dS are differential volume and surface elements, respectively, and ∂/∂n
signifies a partial derivative in the outward normal direction at each point on S.

While this theorem forms the foundation of scalar diffraction theory, its application
to the diffraction problem requires a prudent choice of an auxiliary function G and a
closed surface S. Next, we discuss Kirchhoff's choice of the auxiliary function and the
consequent integral theorem that follows.

Kirchhoff's formulation of the diffraction problem is based on an integral theorem
that expresses the solution of the homogeneous wave equation at an arbitrary point in

2While we currently disregard the influence of lensing on the polarization tensor, it's worth noting that
some investigations have explored its potential impact (e.g., Dalang et al. 2022; Sharma et al. 2023)
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Figure A.1: A depiction of the surface of integration.

terms of the solution and its first derivative on an arbitrary closed surface surrounding
that point. Let P0 denote the point of observation and let S be an arbitrary closed surface
surrounding P0 (see Fig. A.1). If there are no sources inside S, then Eq. A.6 becomes a
homogeneous wave equation:

(∇2 + ω2)ϕ̃ = 0. (A.8)

We aim to express the disturbance at the point P0 in terms of its values on S. Choosing
the auxiliary functionG to be the Green's function for the homogeneous Maxwell's equa-
tion, i.e., a unit-amplitude spherical wave expanding about P0, then the value of G at an
arbitrary point P1 is given by:

G(P1) =
eiωr01

r01
, (A.9)

where r01 = |rP0 − rP1 |. This ensures that:

(∇2 + ω2)G = 0 . (A.10)

We then utilize Green's theorem for functions ϕ̃ and G. However, since G is not defined
at P0, a small surface Sϵ having radius ϵ is inserted around P0. Green's theorem is then
applied to region V ′ lying between S and Sϵ as shown in Fig. A.1, yielding (Goodman
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2005): ∫∫∫
V ′
(ϕ̃∇2G−G∇2ϕ̃)dV = 0 =

∫∫
S+Sϵ

(
ϕ̃
∂G

∂n
−G

∂ϕ̃

∂n

)
dS,

⇒
∫∫

Sϵ

(
ϕ̃
∂G

∂n
−G

∂ϕ̃

∂n

)
dS = −

∫∫
S

(
ϕ̃
∂G

∂n
−G

∂ϕ̃

∂n

)
dS . (A.11)

On Sϵ, we have:

G(ϵ) =
eiω|ϵ|

|ϵ|
. (A.12)

Thus, the partial derivative of G(ϵ) with respect to the outward normal direction at P0
becomes:

∂G(ϵ)

∂n
=
eiω|ϵ|

|ϵ|

(
iω − 1

|ϵ|

)
∂(⃗ϵ)

∂n
. (A.13)

Since ∂(⃗ϵ)
∂n

= −1, we get
∂G(ϵ)

∂n
=
eiω|ϵ|

|ϵ|

(
1

|ϵ|
− iω

)
. (A.14)

Taking the limit ϵ→ 0, we obtain:

lim
ϵ→0

∫∫
Sϵ

(
ϕ̃
∂G

∂n
−G

∂ϕ̃

∂n

)
dS = 4πϵ2 lim

ϵ→0

[
ϕ̃(P0)

eiω|ϵ|

|ϵ|

(
1

|ϵ|
− iω

)
− ∂ϕ̃(P0)

∂n

eiω|ϵ|

|ϵ|

]
= 4πϕ̃(P0) . (A.15)

By combining equations A.11 and A.15, we arrive at the integral theorem of Helmholtz
and Kirchhoff (Goodman 2005):

ϕ̃(P0) =
1

4π

∫∫
S

[(
eiωr01

r01

)
∂ϕ̃

∂n
− ϕ̃

∂

∂n

(
eiωr01

r01

)]
dS, (A.16)

which plays a crucial role in the scalar diffraction theory by expressing the field at any
point P0 in terms of the ``boundary values" of the wave on any arbitrary closed surface
surrounding that point.

A.1.3 Diffraction by a microlensing compact object

Now, we delve into the specific problem relevant to this thesis: diffraction caused by
an intervening microlensing compact object. Figure A.2 illustrates the lensing geometry
involving the source, the lens, and the observer, akin to the setup depicted in Figure 2.1.
DL, DS, DLS represent the separations from the observer to the lens, from the observer
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Figure A.2: Illustration of the volume V inside the dashed line. The boundary of this
region consists of two parts: S1 lies close to the lens plane but excludes it, while S2 con-
stitutes the surface of a sphere with a radius R, centered at the observer. nnn is the normal
vector to the lens plane. [Figure adapted from Takahashi & Nakamura (2003)].

to the source, and from the lens to the source, respectively. ηηη is a position vector of the
source in the source plane, while ξξξ is the impact parameter in the lens plane. We use the
thin lens approximation in which the lens is characterized by the surface mass density
Σ(ξξξ), and the GWs are scattered only at the thin lens plane. This approximation holds
well in typical lensing scenarios whereDS is much larger than the typical size of the lens.

We define a volume V within Figure A.2, enclosed by the dashed line. The boundary
of this region consists of two parts: S1 lies close to the lens plane but excludes it, while S2
constitutes the surface of a sphere with a radius R, centering at the observer. As per the
thin lens approximation,U = 0within V , thereby reducing Equation A.6 to the Helmholtz
equation, as in Equation A.8, within V . Utilizing the integral theorem of Helmholtz and
Kirchhoff, Eq. A.16, we express (Goodman 2005):

ϕ̃(P0) =
1

4π

∫∫
S=S1+S2

[
ϕ̃
∂

∂n

(
eiωR

R

)
−
(
eiωR

R

)
∂ϕ̃

∂n

]
dS, (A.17)

where a negative sign has been absorbed due to the inward direction of nnn. We first focus
on the integral over the surface S2. Since both ϕ̃ and G = eiωR/R fall off as 1/R, they
will be vanishingly small at the surface. But since S2's area will also increase as R2, we
do not know whether the integral will have non-zero contributions. Interestingly, if we
consider the fact that waves travel with finite speed, they would not have had time to
reach S2, and so the integral over S2 will vanish identically. However, this argument falls
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short because of our assumption of monochromatic disturbances, which (by definition)
have existed for all time. Thus, it needs a more careful investigation which we do next.
Upon setting R → ∞, we can write∫∫

S2

[
ϕ̃
∂

∂n

(
eiωR

R

)
−
(
eiωR

R

)
∂ϕ̃

∂n

]
dS =

∫∫
S2

(
eiωR

R

)(
iωϕ̃− ∂ϕ̃

∂n

)
R2dΩ, (A.18)

where Ω is the solid angle subtended by S2 at P0. Since |eiωR| is uniformly bounded on
S2, the integral vanishes uniformly over Ω when:

lim
R→∞

R

(
iωϕ̃− ∂ϕ̃

∂n

)
= 0, (A.19)

which holds true when ϕ̃ vanishes at least as fast as the diverging spherical wave. Con-
sequently, the integral over S2 indeed vanishes, yielding (Goodman 2005):

ϕ̃(P0) =
1

4π

∫∫
S1

[
ϕ̃
∂

∂n

(
eiωR

R

)
−
(
eiωR

R

)
∂ϕ̃

∂n

]
dS. (A.20)

Now, we will use eikonal approximation to determine ϕ̃ and ∂ϕ̃/∂n on the boundary
S1. We assume ϕ̃ has the form (Takahashi & Nakamura 2003):

ϕ̃ = AeiωS ≡ AeiSp , (A.21)

where the eikonal approximation captures the high-frequency limit of a wave solution,,
i.e., assuming ω ≫ 1. This assumption implies that A represents a slowly varying am-
plitude, while sp constitutes a rapidly varying phase. Mathematically, this translates to:
|∇A/A| ≪ |∇Sp/Sp| and |∇2Sp| ≪ |∇Sp|2. Upon substituting this into the wave equa-
tion ∂µ∂µϕ̃ = 0 and expanding in powers of ω, at leading order, we obtain the eikonal
equation (Bernardeau 1999):

gµνS,µS,ν = 0, (A.22)

where gµν is the (inverse) metric. Applying this to Eq. A.6, we get

ω2
[
1− (∇S)2

]
ϕ̃ = 4ω2Uϕ̃,

⇒ (∇S) ≈ (1− 2U),

or, S =

∫
dl(1− 2U), (A.23)

where dl represents the measure of the integral along the path of the GW. Now, the phase
at T , the intersection point between the GW and the lens plane (see Fig. A.2), will be
(Takahashi & Nakamura 2003)

Sp = ω

∫ T

S

dl (1− 2U) = ω

[∫ O

S

dl −
∫ O

T

dl

]
(1− 2U). (A.24)
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Utilizing the fact the GW propagates along a null geodesic, we can write

dt = dl(1− 2U), (A.25)

for the metric in Eq. A.1. Consequently, the first term in Eq. A.24 represents the arrival
time tL of the GW from S to O, while the second term is just the distance r between T
and O, i.e.,

Sp = ω(tL − r) . (A.26)

Thus, we have:

ϕ̃ = Aeiω(tL−r);
∂ϕ̃

∂n
= iωϕ̃ cos θ′. (A.27)

G =
eiωr

r
;

∂G

∂n
= − cos θe

iωr

r

(
iω − 1

r

)
. (A.28)

Under realistic scenarios, the small angle approximation holdswell, i.e., |θ| ≪ 1 and |θ′| ≪
1. Therefore, the lensed field at the observer ϕ̃L

obs in Eq. A.20 is given by (Bernardeau 1999;
Takahashi & Nakamura 2003):

ϕ̃L
obs(ω,ηηη) =

ωA

2πiDL

∫
d2ξ exp [iωtL(ξξξ,ηηη)] . (A.29)

A.1.4 Lensing Amplification Factor

The lensing amplification factor F : R → C quantifies the impact of GL on GW signals.
It's defined as (Takahashi & Nakamura 2003):

F (ω,ηηη) =
ϕ̃L

obs(ω,ηηη)

ϕ̃obs(ω,ηηη)
, (A.30)

where ϕ̃L
obs(ω,ηηη) and ϕ̃obs(ω,ηηη) represent the GW amplitudes with and without lensing,

respectively. In the absence of lensing (U = 0), ϕ̃obs(ω,ηηη) is given by:

ϕ̃obs(ω,ηηη) = A′eiωtUL(ηηη), (A.31)

where tUL denotes the arrival time in the absence of lensing. Using the fact that the
amplitude falls linearly with the distance, we can express A′ in terms of A as:

A′ =

(
DLS

DS

)
A. (A.32)

Therefore, the amplification factor is given by (Bernardeau 1999; Takahashi & Nakamura
2003):

F (ω,ηηη) =
Ds

DLDLS

ω

2πi

∫
d2ξ exp [iωtd(ξξξ,ηηη)] , (A.33)
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where td(ξξξ,ηηη) signifies the time delay between the arrival times of lensed and unlensed
signals:

td(ξξξ,ηηη) = tL(ξξξ,ηηη)− tUL(ηηη) + ϕm(ηηη) . (A.34)

Here, ϕm(ηηη) represents an arbitrary constant independent of the lens properties, typically
chosen to ensure min

{ξξξ,ηηη}
[td(ξξξ,ηηη)] = 0. Employing dimensionless units and considering

signal traverses cosmological distances (wherein ω transforms as ω → (1+ zL)ω) we can
express the amplification factor given in Eq. A.33 into its dimensionless form, as given in
Eq. 2.5. Note that the phase of the lensing amplification factor is determined by the factor
ωtd, which sets the threshold for the significance of wave-optics effects. When ωtd ∼ 1,
wave-optics effects become dominant, resulting in frequency-dependent modulations in
F (ω). Conversely, in the geometric optics limit where ωtd ≫ 1, the phase becomes highly
oscillatory, and only the stationary points of td contribute to the integral, leading to the
expression in Equation 2.7.

A.2 Lensing Time Delay Derivation

The time delay function td plays a pivotal role in GL, serving as a measure of the delay
relative to the straight, undeflected path of light rays. This function encapsulates essential
information about the lensing system, encompassing its physical properties and enabling
the derivation of fundamental equations such as the lens equation. Moreover, as illus-
trated in the preceding section, td also plays a crucial role in determining the lensing
amplification factor. In this section, we delve into the explicit formulation of the time
delay function arising from the presence of an intervening lens.

The total time delay, denoted as td, consists of two primary components: the geo-
metric time delay ∆tgeom and the gravitational time delay ∆tgrav, expressed as follows
(Suyu et al. 2024):

td = ∆tgeom +∆tgrav . (A.35)

The geometric time delay originates from the disparity in the paths traversed by the lensed
and unlensed light signals. Conversely, the gravitational time delay, also referred to as the
Shapiro delay, arises solely due to the gravitational influence of the lens on the spacetime
metric. In the subsequent discussion, we derive each of these temporal delays individually.

A.2.1 Geometric Time Delay

Consider Figure 1, where we depict a lensing scenario comprising a source (S), observer
(O), and a lens (L). The line segment SO denotes the path that a GW signal would
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traverse if unaffected by lensing. In the presence of the lens, the signal deviates from
this path and follows STO. Our objective is to quantify the time delay resulting from
the differences in the lengths of these paths. Throughout this derivation, we adopt the
small-angle approximation.

In Fig. A.3, it is apparent that (Suyu et al. 2024)

∆tgeom = tLgeom − tUL
geom = DL(θ − β) · δ . (A.36)

Moreover, δ can be determined in terms of α using basic trigonometric relations, as noted
below:

p+ δ + q = π , (A.37)

δ + (π − p) + (π − α) + (π − q) = 2π . (A.38)

Using these two equations, we get
δ = α/2 . (A.39)

Furthermore, we utilize the lens equation (which can also be obtained purely from geo-
metric arguments),

θ − β =
DLS

DS
α (A.40)

Thus, using equations A.36, A.39 and A.40, we can write the general form of the geometric
time delay as (Suyu et al. 2024):

∆tgeom =
DLDS

2DLS
(θθθ − βββ)2 . (A.41)

We can further transform this function from coordinates (θθθ,βββ) → (xxx,yyy) using the rela-
tions between the two as given below Eq. 2.1, to yield (Takahashi & Nakamura 2003):

∆tgeom =
2GM

c3
|xxx− yyy|2, (A.42)

where we reintroduced c for clarity. In this equation, M represents the lens mass, and
we choose the arbitrary scaling length ξ0 corresponding to the Einstein radius of mass
M . This formulation constitutes the desired form of the geometric time delay employed
throughout this thesis.

A.2.2 Gravitational Time Delay (Shapiro Delay)

The gravitational time delay ∆tgrav (or the Shapiro delay) occurs due to the fact that the
spacetime is affected due to the presence of the deflector. In realistic scenarios of GL, the
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Figure A.3: Excess path length giving rise to the geometric time delay. The line segment
SO denotes the path that a GW signal would traverse if unaffected by lensing. In the
presence of the lens, the signal deviates from this path and follows STO.

weak field limit holds well, where the spacetime metric induced by the lens approximates
the weak field limit of the Schwarzschild metric. In Cartesian coordinates, this metric can
be expressed as (Suyu et al. 2024):

ds2 = −(1 + 2ϕ)dt2 + (1− 2ϕ)(dx2 + dy2 + dz2), (A.43)

where ϕ is the Newtonian gravitational potential. Considering the propagation of GW
(ds = 0) between two points A and B, with the coordinate system oriented such that the
z-axis aligns with the GW trajectory along the line joining A to B, we obtain:

tLgrav = tB − tA =

∫ zB

zA

dz

√
(1− 2ϕ)

(1 + 2ϕ)
≈
∫ zB

zA

dz(1− 2ϕ). (A.44)

Similarly, in the absence of any lens, we simply have

tUL
grav = tB − tA =

∫ zB

zA

dz (A.45)

Thus, the gravitational time delay ∆tgrav can be expressed as

∆tgrav = tLgrav − tUL
grav = − 2

c3

∫ zB

zA

dz ϕ(z) . (A.46)

Operating under the thin-lens approximation, it is meaningful to define the total potential
in terms of the reduced projected gravitational potential as

ψ′(ξξξ) ≡
∫
dz ϕ(ξξξ, z), (A.47)

which, using Poisson's equation, can be related to the surface mass density distribution
Σ(ξξξ) through

∇2
ξξξψ

′(ξξξ) = 4πGΣ(ξξξ). (A.48)
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Using equations A.46-A.48, we get (Suyu et al. 2024):

∆tgrav = − 2

c3
ψ′(ξξξ), (A.49)

where we reintroduced the constants for clarity.

A.2.3 Total lensing time delay

Using equations A.34, A.35, A.42, and A.49, we can express the total lensing time delay td
in terms of the dimensionless coordinates {xxx,yyy} as (Takahashi & Nakamura 2003):

td(xxx,yyy) = (1 + zL)
4GM

c3

[
1

2
|xxx− yyy|2 − ψ(xxx) + ϕm(yyy)

]
, (A.50)

where ψ(xxx) = ψ′(xxx)
4GM/c2

and, as mentioned below Eq. A.34, ϕm(yyy) is an arbitrary constant
chosen such that min

{xxx,yyy}
[td(xxx,yyy)] = 0. The term (1 + zL) is introduced to account for the

expansion of the Universe during the GW's travel from the lens to the observer.

As an example, let's determine the projected potential ψ(xxx) for a point-mass lens
and derive the total time delay for such a case. By considering the general form of the
deflection α′α′α′(ξξξ) as the superposition of the deflections produced by the individual mass
differentials, we have (Suyu et al. 2024):

α′α′α′(ξξξ) =
4G

c2

∫
d2ξ′ξ′ξ′ Σ(ξ′ξ′ξ′)

ξξξ − ξ′ξ′ξ′

|ξξξ − ξ′ξ′ξ′|2
. (A.51)

Utilizing equations A.48 and A.51, along with the Green's function for the 2D Laplacian
(satisfying ∇2

ξξξG(ξξξ, ξξξ′) = 2πδ2(ξξξ − ξξξ′)) as G(ξξξ, ξξξ′) = ln |ξξξ − ξξξ′|, we can write

ψ(ξξξ) = 2G

∫
d2ξξξ′ Σ(ξξξ′) ln |ξξξ − ξξξ′| , (A.52)

α′α′α′(ξξξ) =
2

c2
∇2
ξξξψ(ξξξ). (A.53)

Using equations A.51-A.53, it is now straightforward to show that for a point-mass lens,
ψ(xxx) = ln |xxx|, leading to (Takahashi & Nakamura 2003; Suyu et al. 2024):

tpoint
d (xxx,yyy) = (1 + zL)

4GM

c3

[
1

2
|xxx− yyy|2 − ln |xxx|+ ϕm(yyy)

]
. (A.54)

150


