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1 Data Quality

Figure 1: Detector diagram

A gravitational wave interacts with the system, changes the length of the arms and then
we read the strain in the gravitational wave channel which is sampled at around 16 kHz.

h =
Lx − Ly

L
(1)

1.1 Strain Data: Post Processing

Raw Time-Series

Whitened Noise

Bandpassed Data

The data we have, i.e. the raw time series, contains a lot more
power at lower frequencies than at higher frequencies and that
kind of overshadows or dwarfs the feature at higher frequencies,
so we whiten the data and by that we mean, we normalize the
power in all these frequency bins so that the features at higher
frequencies are also better visible. Once we have whiten the data,
we bandpass it. So we take a lower frequency cut-off and we say
that we are only interested in whatever is going on between these
two thresholds and that we are not interested in anything below
10 Hz or anything above 300 Hz. This is done because we already
expect within this frequency range.

Q-transform (After Bandpassing)

• Q-transform allows us to visualize the data in time frequency space.

• It helps us in understanding Noise morphology, noise identification and classifica-
tion, potential correlations with other parts of the instruments.

1.2 LIGO Data Quality

Sensitivity plot tells us how good a job we are doing or how sensitive our detector is and
the lower it is the better it is. Then we can discover more GW and so we do a lot of
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things to improve the sensitivity both during the observing run and after it, but mainly
after the observing run. So once an observing run ends we make a lot of changes that
improve the overall sensitivity of the detector and these changes include:

• Increasing the laser power

• New test mass mirrors

• Employing light squeezing - this helps with the quantum noise

• Fixing sources of noise

• A ton of small improvements

Figure 2: GW Amplitude Spectral Density

In this plot we have seismic noise that dominate at low frequency and that diminishes
our ability to get good data at those frequencies and then we have shot noise at higher
frequency and shot noise is a type of quantum noise which is due to the uncertainty in the
number of photons that hit the photo-detector and that’s why we have light squeezing
which helps with reducing the shot noise.

Shot noise and Seismic noise are Gaussian noise, these are stationary, they don’t change
over time.

But we can also have non-Gaussian or non-Stationary noise, which we call Noise Tran-
sients.

What are they?
Excess power over a short duration, also known as glitches.
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How do we detect them?
Omicron tools - it takes in the strained data from the primary gravitational wave
channel but also from other auxiliary channels and it finds these excess power in the
strain data and we call them omicron triggers.

What causes them?
Ground motion, thunderstorms, change in humidity etc

• We have different types of transients based on how they look in the time frequency
plane.

Why these transients are bad?
These transients can mask a real GW signal, can mimic a signal, reduce our confi-
dence in the detection, reduce the astrophysical range and introduce problems for the
parameter estimation.

Where do these transients originate?
Auxiliary channels, so many of them !!!
We have a channel that measures how much the test mass mirror is moving with
respect to suspension cage, we have auxiliary channel that looks at beam alignment,
we have auxiliary channel that tells us how much the ground is moving at different
locations in the XYZ directions. And sometime something goes wrong in one of these
channels and if we are really unfortunate, it may permeate to the GW channel and
create problems for us.

What to do about the transient noise?

• Identify the noise - figure out its feature, what is its duration, how frequently it
happens, or does it have any correlation with trucks coming to the site or with
thunderstorms.

• Look for the potential correlation with the auxiliary channels and subsystems.
• Performs tests to simulate the noise - We may shake a component of the detector
to see if that would actually create noise in the GW channel and if that happens
we are in luck and we can fix that source of noise.

• Fix the source of noise to reduce it or eliminate it.
• Develop Vetoes.

To do all these we have Detector Characterization Tools (Detchar Tools) or
Data Quality Tools

• Gravity Spy
• Q Transform
• Hveto
• Gwdetchar Scattering
• Omicron
• Summary pages
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1.3 Q - Transform

• Visualizing the glitch morphology in time - frequency plane.

It starts with taking the data and it projects the data on multi-resolution basis which
is parameterized by time, frequency and ’q’, which is a constant ratio of duration to
bandwidth, so we can also think of ’q’ as an aspect ratio.

• So these Q-transform creates these multiple spectrogram with constant q and then
it optimizes over these plane and picks a plane which contains the loudest time-
frequency tile and once it picks a plane it means it has picked a ’q’, so we have
what it returns at the end is a high-resolution spectrogram with a specific ’q’ value
and with a specific event time and frequency.

• gwpy timeseries.q transform returns a high-resolution spectrogram with a specific
’q’ value and with a specific event time and frequency.

1.4 Gravity Spy

It is an image recognition algorithm which is based on convolutional neural network. It
helps us classify 23 transient noise in LIGO during 3rd observation run.

Omicron tells us which day we have a lot of transients but gravity spy tells us which day
we had a specific type of noise transients. So, for example if there is a day with a lot of
trains passing by LIGO Livingston or it had a lot of seismic wave in 1-3 Hz band and
that’s why probably we had a lot of fast scattering. So, it helps us correlate the type of
transients that we have with the conditions that may be present at the detector.

1.5 Hardware Injections (HI)

• HI is when we inject a signal that physically actuates one of the test mass.

• A set of sine-Gaussians with different frequency and amplitude.

• Establish safety of vetoes, safe and unsafe auxiliary channels.

Safe auxiliary channels:

• Does not respond to hardware injections in primary GW channel.

• Can be used to veto primary GW channel transients.

5



2 Physics and Astronomy with Coalescences

Figure 3: Phases of a merger and dependence of GW

fgw = 2forbital
depends on−−−−−−→ Mass, spin (2)

As these GWs are carrying away this orbital energy and angular momentum, these two
compact objects are getting closer together so the forbital is increasing and so the fgw
increases as well. The GW also gets louder and louder as the two compact objects get
closer together. Eventually the compact objects merge and then we are left with black
hole ringdown with a a characteristic signal that depends on the mass and spin of our
final black hole.

2.1 GW encode source properties like

• How big is each black hole or neutron star?

• How fast are they spinning?

• Where and when did they merge?

• How squishy are neutron stars?

2.2 Learning about the full population of compact objects

• A population model describes the distribution of masses, spins etc across multiple
events.

• Example : Fit a power law to black hole masses.

• Population parameters : power-law slope, minimum BH mass, maximum BH mass.
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Figure 4: Population of BH

3 CBC searches and Matched Filtering

3.1 CBCs

• As object orbit they lose energy to GWs.

• The orbit shrinks and speeds up, releasing more energy to GWs.

• Frequency and amplitude of GWs increases monotonically.

• Creates a runaway process leading to inspiral merger.

Figure 5: Black Hole Merger

• Waveforms model the inspiral, merger and ringdown of the binary.
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• Intrinsic parameters - masses and spins

• Extrinsic parameters - sky position, inclination, time of arrival, phase

3.2 Matched Filtering

3.2.1 An introduction on the LIGO data

We assume that strain data from detectors consists of a possible signal and additive noise.
We assume that the noise is stationary and Gaussian.

• Stationary Noise - the noise properties are constant in time.

• Gaussian Noise - the noise values follows distributions which we can transform
to have 0 mean.

d[ti]︸︷︷︸
Strain data

= n[ti]︸︷︷︸
noise

+ s[ti]︸︷︷︸
signal

(3)

3.2.2 Matched Filtering as cross-correlation

If we know what the signal looks like, we can use matched filtering to find signals in the
data. Matched filtering is a correlation of a template waveform with the data. Matched
Filtering output is the signal-to-noise ration SNR time-series.

ρ(t)︸︷︷︸
SNR time series

= 2

∞∫
−∞

df h̃(f) d̃(f) exp 2πift

︸ ︷︷ ︸
(whitened) template waveform

(Frequency domain)

= 2

∞∫
−∞

dτ h(τ) d(t+ τ)

︸ ︷︷ ︸
(whitened) data = noise + possible signal

(Time domain)

We are taking a template and we slide it along the data and at every point in time we
calculate the overlap between the template and the data and the output of that process
is SNR or SNR time-series.

Peaks in the SNR time-series are used to identify signals in the data.

A coincident SNR peak in the data from multiple detectors increases the significance.

3.3 Constructing the template banks

• Matched filtering relies on knowing the shape of the signal.

• For CBC waveforms we can model the signals with template waveforms.

• We construct template banks of waveforms that vary over the intrinsic property.
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Figure 6: Grid of template bank

Waveforms depends on masses and spins of the
source which is at the start unknown, i.e. we don’t
know what masses and spins we might necessar-
ily be looking for, so we can’t just pick one tem-
plate and match filter the data and be done with it.
Instead what we have to do is construct template
banks, which means basically we choose a param-
eter space that we are interested in; so a range of
masses and spins we are going to construct tem-
plates covering this entire range and then filter all
of those templates.

How many templates do we need?

• If the signal perfectly matches the template, we will have an optimal SNR.
• Any mismatch causes an SNR loss.
• Construct banks with a dense grid of templates such that any signal will be close
enough to the nearest template.

• Ntemplates ∼ O(105 − 106)

3.4 Revisiting the assumptions made about the LIGO data

In reality LIGO data is not well-modeled.

• non-stationary over short and long-time scales.

• non-Gaussian

The only characterisation of the LIGO noise is from observations.

Figure 7: LIGO and VIRGO PSD for O3

Note : The PSD shows a measure of the sensitivity and how the noise varies over
frequency bins. The lower the lines =⇒ more sensitive the detector is.
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3.4.1 Colored Noise

LIGO noise is not white, i.e. the power is not evenly distributed across frequencies.

ρ(t) =

∞∫
−∞

dτ ĥ(τ) d̂(t+ τ)

︸ ︷︷ ︸
whitened template and data

(4)

d̂(τ) =

∞∫
−∞

df
d̃f√
Sn(|f |)

exp 2πift (5)

Note : The PSD varies across bins, so the data needs to be whitened before filtering,
essentially scaled by the PSD in frequency space.

3.4.2 Non-Stationarity

• Noise properties can vary over long-timescales.

• We must continuously track the noise properties and update our estimate of the
PSD.

• The snapshot of the PSD of O3 data may differ at different times.

• Noise properties can vary over short-timescales. And these short duration non-
Gaussian artefacts in the data are glitches.

• Glitches can be a major problem for matched filtering searches.

3.5 Complementation in real searches

3.5.1 Matched filtering with real search pipelines

In practise, real search pipelines must come up with solutions to handle non-ideal noise
properties. Filtering millions of templates over months of data or in real time is a huge
computational burden.

To make this feasible, real search pipelines need to find ways to make the process more
efficient. The three searches are - PyCBC, GstLAL and MBTA each use slightly different
methods.

3.5.2 Matched Filtering with GstLAL - non-Gaussian data

Solution 1: Gating

• Remove stretches of data with large non-Gaussian features before matched filtering.

• But we have to be careful not to accidentally gate a real data.
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Figure 8: Whitened strain data with a glitch surpassing 50 standard deviations is gated
by replacing ±0.25 seconds around the glitch with zero.

Note : This can be problem for higher mass templates, i.e. very heavy BBH. They can
have waveforms that are extremely loud and very short, so these are very easy to mix up
with glitches.

Solution 2 : Signal Consistency Tests

• Matched filtering doesn’t produce just an SNR peak, but a time-series of SNR data.

• Compare the SNR time-series shape to the predicted shape for a template waveform.
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Figure 9: SNR time-series for a simulated signal compared to the predicted SNR from
the auto-correlation of a template waveform.

Solution 3 : iDQ

• iDQ = integrated data quality

• Use machine learning and data from auxiliary channels to identify glitches.

• Clean data : boost significance of candidates.

• Glitchy data : reduce significance of candidates.

12



Figure 10: iDQ

3.5.3 How GstLAL handles this computational burden of matched filtering?

LLOID Method → Low Latency Online Inspiral Detection

This method was developed to enable real time matched filtering and even early warning
matched filtering, which means that we are able to identify a signal in the data even
before the merger occurs or before the coalescence time of the signal and this method
consists of two steps, i.e.

LLOID =

�
�

�
�

Time Slicing and
Down Sampling︸ ︷︷ ︸

Exploit signal properties

+

�
�

�
�

Singular Value De-
composition (SVD)︸ ︷︷ ︸

Exploit template bank properties

(6)

The whole idea of this method is to :

• Reduce the computational burden

• Improve efficiency

• Lower the latency of the search

Step 1: Time Slicing and Down Sampling

• Take advantage of monotonic increase in signal frequency.

• Use lower sampling rate at earlier parts of the signal to avoid oversampling.

• In order to accurately represent any waveform we need to sample it at a sampling
rate that at least twice as high as the largest frequency component in the waveform.
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Figure 11: We can slice waveforms into fre-
quency bands and then down-sample each
one to save computations.

Step 2: Singular Value Decomposition (SVD)

• Our template banks are highly redundant.

• Transform to a reduced set of basis waveforms.

• Filter with the basis waveforms, then reconstruct the physical templates after fil-
tering.

Figure 12: SVD

Remember that we reconstruct these template banks to be extremely dense over the full
parameter space so that we can make sure that we are not losing very much SNR, but
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because these template banks are so dense we end up with a lot of redundant templates,
they all look really similar and maybe from template to template there’s just a very small
change and so if we filter all of these it would be a pretty redundant process. So, instead
what we do is we can think each of these waveforms as a vector and the full set of these
waveform vectors cover the space of our parameter space that we chose. What we can do
is reduce the set of vectors to a set of basis waveforms, which still covers the space but
all of the basis waveforms are linearly independent so there’s a much smaller number of
them. The set of basis waveforms can maybe at least factor of 10 smaller than original
size of the bank. Thus the idea with SVD is that we can perform our matched filtering
with these basis waveforms and then at the end we can reconstruct any of the original
input templates by just doing a linear combination of the basis waveforms.

3.5.4 Matched Filtering with PyCBC and MBTA

• PyCBC and MBTA both regularly perform matched filtering in the frequency do-
main, whereas GstLAL does matched filtering in the time domain.

• Perform Fast Fourier Transform on blocks of data, then correlate the data with the
template waveform.

• Typical block length = 2048 seconds

d̃[K] =
N−1∑
j=0

d[j]e−2πijk/N → DFFT (7)

ρ[j] = d[j] ∗ h[j]︸ ︷︷ ︸
Time domain requires convolution

→ ρ̃[k] = d̃[k] · L̃[k]︸ ︷︷ ︸
Frequency domain is just a multiplication

(8)

So the idea here is that if we are doing matched filtering in the time domain, to get the
output or SNR at any point in time, we have to do convolution, i.e. we have to do this
integral given in Eq. 7, but if we transform to frequency domain, then that convolution
just becomes a multiplication. So what PyCBC and MBTA do is that first take the
time-series data from the detector, then they do the FFT on the data to get into the
frequency domain. Then we can filter just by doing this multiplication and then FFT
back to get the SNR time series out.

How do PyCBC and MBTA handle the non-Gaussian data?
PyCBC and MBTA both use gating and signal consistency tests similar to GstLAL.

• PyCBC and MBTA do not use iDQ, but they do use vetoes to reject triggers from
times identified to have poor data quality.

For MBTA

Step 1: Re-filter high mass templates

• Heavy mass BBH systems can be mistaken for glitches due to their short duration.
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• MBTA re-filters templates with duration < 3 seconds without gating first.

• This helps to avoid accidentally gating real signals.

Step 2: Multi-Banding Filter with waveforms split into two frequency bands:

• Low frequency band: f0 < f < fc

• High frequency band: f > fc

Reconstruct the templates after filtering

Figure 13: Multi Banding

Summary

CBC searches find GWs from merging black holes and neutron stars in LIGO/VIRGO
strain data.

These searches use matched filtering - a correlation between the data and numerical or
analytical models of the signal - to identify signals in the data.

Real matched filtering searches - PyCBC, GstLAL and MBTA - each employ similar but
distinct methods to:

• implement matched filtering

• improve sensitivity in non-stationary, non-Gaussian data, and

• reduce computational cost
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4 Estimating Parameter from Gravitational Wave Sig-

nals

The question is: How do we go from wiggles that we see in our detectors to the mea-
surement of parameters of signals, say the mass of the Black Hole in Binary Black Hole
System?

Figure 14: The Problem at hand

But why do we care about estimating parameters?

• Understand the Physics and Astrophysics eg. equation of state of neutron stars.

• Perform tests of general relativity.

•

• . . . and for more interesting and impactful science.

4.1 Our Tools

• Models for the signal and noise.

• Bayes Theorem

P (A|B) =
P (B|A)P (A)

P (B)
(9)

• Stochastic Samplers: emcee, dynesty etc. These are basically the tools that we use
to efficiently find probability distributions that we actually want to measure.

• And some nice code to tie them together! (’Bilby’, which is a parameter estimation
package).
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4.2 The Signal and the Noise

Figure 15: Data = Signal + Noise

4.2.1 The Signal

It has two polarizations. Described by 15 parameters in case of a binary black hole.

• Intrinsic parameters: masses, spins etc.

• Extrinsic parameters: distance, sky location (RA, Dec), polarization angle ψ etc.

h(θ; t) =
∑
p=+,x

Fp (RA, Dec,ψ)︸ ︷︷ ︸
these factors also known as Antenna Parameter Function

hp(θ; t) (10)
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• Higher mass =⇒ shorter signal but more amplitude

• The red vector is perpendicular to the plane of the rotation of the binary and it
is also the direction of orbital angular momentum of the binary. If the individual
angular momentum of these black holes, also known as spins, are actually aligned
to the angular momentum of the binary and that too in the positive sense, that
actually increases the length of the waveform. If there is no spin at all the length
of the waveform will decrease. And if the spins are anti-aligned, it will further
decrease the waveform length.

Figure 16: Spin alignment of BBH

So, binary black holes with anti-aligned spins will merge first, followed by those
with zero spin.

• Higher aligned spin =⇒ Longer Signal

One very interesting thing that happens with binaries, where the spin vector is no
longer aligned with the orbital angular momentum, is that the orbit starts precessing
and when that happens there are these discernible amplitude variations.
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4.2.2 The Noise

• The noise properties are generally unknown and need to be calculated from the
data.

• We shall make the following assumptions:

– Stationary: The ”noise properties” do not change with time.

– Colored Gaussian: The ”noise properties” are different at each frequency, but
described by a Gaussian process.

Under these assumptions noise properties are described by the Power Spectral Density
(PSD), Sn(f) in the frequency domain.
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• PSD =⇒ variance of noise at each frequency

P (ni) ∼ exp−2δf
n2
i

Sn(fi)
(11)

where, P (ni) is the probability of getting a noise sample, ni at any frequency fi.
And by variance we mean it in the sense of Gaussian distribution, so there’s a mean
of the noise, which is taken to be zero and the variance of the noise is basically given
by being proportional to the power spectral density.

How do we estimate PSD from the data?

• To estimate the PSDWelch Method:

– Divide time-series data into small segments. They could be overlapping seg-
ments as well.

– Fourier Transform and calculate |d(f)|2, which is basically the Fourier trans-
form, for each segment.

– Calculate the average over all segments.

So, if we have more data to average over, we will have a ore accurate estimation of a
PSD, which is shown in the plot
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4.3 Bayes Theorem

P (A|B) =
P (B|A)P (A)

P (B)
(12)

goes to−−−−→ P (θ|d) = P (d|θ)P (θ)
p(d)

(13)

where, d is data.

We will promote all of these to also a probability distribution, here we were talking about
individual probabilities, but now we will think of these Ps as probability distribution and
we will also give these probability distribution their own separate symbol.

Just changing the notations a bit more we get,

p(θ|d) = L(d|θ)π(θ)
Zs

(14)

where, p(θ|d) is posterior distribution of parameters, L(d|θ) is likelihood, π(θ) is prior
and Zs =

∫
dθ L(d|θ)π(θ) is known as evidence.

The problem with parameter estimation is to actually estimate the left hand side of Eq.
14, which is called posterior distribution, the probability that the set of parameters θ
describes he signal.

4.3.1 The Likelihood

• At each frequency, the residual after subtracting the best fit signal from the data,
should look like noise and hence follow a Gaussian distribution.

• Hence the likelihood function/ distribution can be written as a Gaussian distribu-
tion in the residuals. For each frequency:

L(di|θ) =
2δf

πSn(fi)
exp

(
−2δf

|d(fi)− h(fi; θ)|2

Sn(fi)

)
(15)

And hence Total Likelihood can be written as:

L(d|θ) =
N∏
i=1

L(di|θ) (16)

4.3.2 The Prior Distribution

• A distribution that encodes the prior knowledge/ belief in what parameters of the
system ought to be.

• Example:

– No specific preferred direction in the sky =⇒ Uniform in sky area

– Not much information about the mass distribution =⇒ Uniform in masses.
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– Physical limit on the maximum spin on neutron stars =⇒ ¡ 0.89.

– and so on.

4.3.3 The Evidence

• The Evidence is used to compare different hypothesis for the data.

• Example: Signal vs Noise

A simple example of where the evidence is used is in comparing signal and noise.
So, say we want to find out how significant is the fact that the data contains the
signal is compared to the hypothesis that the data contains no signal.

– The evidence for noise is just the likelihood with no signal.

Zn =
2δf

πSn(fi)
exp

(
−2δf

|d(fi)|2

Sn(fi)

)
(17)

– Bayes Factor (of signal vs noise) is the ratio of evidences:

BFS
N =

ZS

ZN

(18)

If the Bayes Factor is say above certain cut-off say 3000, we say that there is
evidence for the signal being present in the data.

4.4 The Problem

• We have all tools to calculate the posterior. But we have to calculate it over a very
high dimensional space.

• Gridding the space and calculating will be inefficient (cost scales exponentially with
dimensions.)

• Solution: Use stochastic samplers

4.5 Stochastic Samplers: Markov Chain Monte Carlo

• Populate the prior space with random numbers.

• Take steps based on whether the move will increase probability.

• Note: there exists other sampling methods too, eg nested sampling, used frequently
in LVK data analysis.
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5 Projects

All these questions I have attempted from a workshop organised by Gravitational Wave
Open Science Center

5.1 Data Access

How many months did O2 lasted?

1 from gwosc.datasets import run_segment

2 O2 = run_segment(’O2_4KHZ_R1’)

3 print(’O2 start and stop gps: ’, O2)

4 time_seconds = O2[1] - O2[0]

5 month_seconds = 30 * 24 * 3600

6 print(’months in O2:’, time_seconds / month_seconds)

Output -
O2 start and stop gps: (1164556817, 1187733618) months in O2: 8.941667052469136

How many GWTC-3-confident events were detected during O3b?

1 from gwosc import datasets

2 from gwosc.datasets import run_segment

3 GWTC3_events = datasets.find_datasets(type=’events’, catalog=’GWTC-3-

↪→ confident’, segment=run_segment(’O3a_16KHZ_R1’))

4 print(len(GWTC3_events))

Output -
0

What file URL contains data for V1 4096 seconds around GW170817?

1 from gwosc.locate import get_event_urls

2 url = get_event_urls(’GW170817’, duration=4096, detector=’V1’)

3 print(url)

Output -
[’https://www.gw-openscience.org/eventapi/json/GWTC-1-
confident/GW170817/v3/V-V1 GWOSC 4KHZ R1-1187006835-4096.hdf5’]

5.2 Working with GWpy

Plot the data for the LIGO-Hanford detector around GW190412. Looking
at your new LIGO-Handford plot, can your eye identify a signal peak?

1 from gwpy.timeseries import TimeSeries

2 from gwosc.datasets import event_gps
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3
4 gps = event_gps(’GW190412’)

5 segment = (int(gps)-5, int(gps)+5)

6 hdata = TimeSeries.fetch_open_data(’H1’, *segment, verbose=True)

7 hdata.plot()

Make an ASD around the time of an O3 event, GW190412 for L1 detector.
Compare this with the ASDs around GW150914 for L1 detector. Which
data have lower noise - and so are more sensitive - around 100 Hz?

1 from gwpy.timeseries import TimeSeries

2 from gwosc.datasets import event_gps

3 import pylab as plt

4
5 gps = event_gps(’GW190412’)

6 ldata = TimeSeries.fetch_open_data(’L1’, int(gps)-512, int(gps)+512,

↪→ cache=True)

7 lasd = ldata.asd(fftlength=4, method="median")

8
9 gps2 = event_gps(’GW150914’)

10 ldata2 = TimeSeries.fetch_open_data(’L1’, int(gps2)-512, int(gps2)

↪→ +512, cache=True)

11 lasd2 = ldata2.asd(fftlength=4, method="median")

12
13 plt.loglog(lasd, label = ’GW190412’)

14 plt.loglog(lasd2,label = ’GW150914’)

15 plt.legend()

16 plt.xlim(10,2000)

17 plt.plot()

18 plt.show()
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Download the data for the LIGO-Livingston detector (L1) around the
GW170814 detection, and make a Q-scan of the data. The signal is visible
for how about how much time?

1 from gwosc.datasets import event_gps

2 from gwpy.timeseries import TimeSeries, TimeSeriesDict

3 gps = event_gps(’GW170814’)

4 print("GW170814 GPS:", gps)

5 data = TimeSeries.fetch_open_data(’L1’, int(gps)-512, int(gps)+512,

↪→ cache=True, verbose=True)

6 QT = data.q_transform(frange=(20, 500), qrange=(4, 12), outseg=(gps

↪→ -.1,gps+.05))

7 QT.plot()
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5.3 Working with PyCBC

Make a waveform with the mass parameters of GW170817, and a low
frequency cut-off (f lower) of 40 Hz. How long is the waveform?

1 from pycbc.waveform import get_td_waveform

2 import pylab

3
4 m1 = 1.46 # solar mass units

5 m2 = 1.27 # solar mass units

6 d = 40 # Megaparsec units

7 f_low=40 # Hertz

8
9 hp, hc = get_td_waveform(approximant="SEOBNRv4_opt",

10 mass1 = m1,

11 mass2 = m2,

12 distance = d,

13 delta_t = 1.0/16384,

14 f_lower = f_low)

15
16 pylab.figure(figsize=pylab.figaspect(0.4))

17 pylab.plot(hp.sample_times, hp, label=’Plus Polarization’)

18 pylab.plot(hp.sample_times, hc, label=’Cross Polarization’)

19 pylab.xlabel(’Time (s)’)

20 pylab.ylabel(’Strain’)

21 pylab.legend()

22 pylab.grid()

23 pylab.show()

Which template provides the best match (highest SNR) to the binary black
hole in file ”File PyCBC T2 0.gwf”?
Information that may be useful:

• Signals are all placed between 100 and 120 seconds into the frame file.
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• You may assume mass1 = mass2 (equal mass) and that each compo-
nent mass is one of 15, 30, or 45.

• Each file starts at GPS time 0, and ends at GPS time 128.
• The channel name in each file is ”H1:TEST-STRAIN”.

1 # Download the challenge set files

2 from pycbc.frame import read_frame

3 from pycbc.filter import resample_to_delta_t, highpass

4 from pycbc.psd import interpolate, inverse_spectrum_truncation

5 from pycbc.filter import matched_filter

6 import numpy

7 import urllib

8
9 def get_file(fname):

10 url = "https://github.com/gw-odw/odw-2022/raw/main/Tutorials/Day_2/

↪→ Data/{}"

11 url = url.format(fname)

12 urllib.request.urlretrieve(url, fname)

13 print(’Getting : {}’.format(url))

14
15 files = [’PyCBC_T2_0.gwf’, ’PyCBC_T2_1.gwf’, ’PyCBC_T2_2.gwf’]

16
17 for fname in files:

18 get_file(fname)

19
20
21 # Reading the data from these files:

22 file_name = "PyCBC_T2_0.gwf"

23
24 # Strain is typically IFO:LOSC-STRAIN, where IFO can be H1/L1/V1.

25 channel_name = "H1:TEST-STRAIN"

26
27 start = 0

28 end = start + 128

29
30 ts = read_frame(file_name, channel_name, start, end)

31
32 # Calculating SNR for each case

33
34 ts = highpass(ts,15.0)

35 ts = resample_to_delta_t(ts, 1/2048)

36 ts2 = ts.crop(2, 2)

37
38 # Using 4 second samples of our time series in Welch method.

39
40 ts2_psd = ts2.psd(4)

41
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42 ts2_psd = interpolate(ts2_psd, ts2.delta_f)

43
44 ts2_psd = inverse_spectrum_truncation(ts2_psd, int(4 * conditioned.

↪→ sample_rate), low_frequency_cutoff=15)

45
46
47 snrp_list = []

48 i = 0

49 required = ’’

50
51 for m in [15,30,45]:

52 hp, hc = get_td_waveform(approximant=’SEOBNRv4_opt’,

53 mass1=m,

54 mass2=m,

55 delta_t=ts2.delta_t,

56 f_lower=20)

57
58
59 hp.resize(len(ts2))

60
61 template = hp.cyclic_time_shift(hp.start_time)

62
63 snr = matched_filter(template, ts2, psd=ts2_psd,

↪→ low_frequency_cutoff=20)

64
65 snr = snr.crop(4 + 4, 4)

66
67 peak = abs(snr).numpy().argmax()

68 snrp = snr[peak]

69 time = snr.sample_times[peak]

70 snrp_list.append(abs(snrp))

71 if i > 0 and snrp_list[i] > snrp_list[i-1]:

72 required = m

73 i+=1

74 print("We found the best match for {} solar masses".format(required))

Output -

We found the best match for 45 solar masses

This is a simple demonstration to loading and viewing data released in
association with the publication titled GWTC-1: A Gravitational-Wave
Transient Catalog of Compact Binary Mergers Observed by LIGO and
Virgo during the First and Second Observing Runs available through DCC
and arXiv. This should lead to discussion and interpretation.
The data used in these tutorials will be downloaded from the public DCC
page LIGO-P1800370.
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Calculate the mean of the chi eff posterior?

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import h5py

4 import pandas as pd

5 import corner

6 import bilby

7 import astropy.units as u

8 from astropy.cosmology import Planck15, z_at_value

9
10 label = ’GW150914’

11
12 ! wget https://dcc.ligo.org/LIGO-P1800370/public/{label}_GWTC-1.

↪→ hdf5

13
14 posterior_file = ’./’+label+’_GWTC-1.hdf5’

15 posterior = h5py.File(posterior_file, ’r’)

16
17 print(’This datasets this file contains are: ’,posterior.keys())

18
19 print(posterior[’Overall_posterior’].dtype.names)

20
21 samples = pd.DataFrame.from_records(np.array(posterior[’

↪→ Overall_posterior’]))

22
23 # Plotting the corner plot

24
25 corner.corner(samples,labels=[’costhetajn’,

26 ’distance [Mpc]’,

27 ’ra’,

28 ’dec’,

29 ’mass1 [Msun]’,

30 ’mass2 [Msun]’,

31 ’spin1’,

32 ’spin2’,

33 ’costilt1’,

34 ’costilt2’]);

35
36
37 # We need to convert the detector masses into source frame mass

38
39 z = np.array([z_at_value(Planck15.luminosity_distance, dist * u.Mpc

↪→ ) for dist in samples[’luminosity_distance_Mpc’]])

40
41 samples[’m1_source_frame_Msun’]=samples[’m1_detector_frame_Msun

↪→ ’]/(1.0+z)
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42 samples[’m2_source_frame_Msun’]=samples[’m2_detector_frame_Msun

↪→ ’]/(1.0+z)

43 samples[’redshift’]=z

44
45 corner.corner(samples[[’m1_source_frame_Msun’,’m2_source_frame_Msun

↪→ ’,’redshift’]],labels=[’m1 (source)’,’m2 (source)’,’z’]);

46
47
48 # Calculate the detector frame chirp mass

49 mchirp = ((samples[’m1_detector_frame_Msun’] * samples[’

↪→ m2_detector_frame_Msun’])**(3./5))/(samples[’

↪→ m1_detector_frame_Msun’] + samples[’m2_detector_frame_Msun

↪→ ’])**(1./5)

50
51 # Initializing a SampleSummary object to describe the chirp mass

↪→ posterior samples

52 chirp_mass_samples_summary = bilby.core.utils.SamplesSummary(

↪→ samples=mchirp, average=’median’)

53 print(’The median chirp mass = {} Msun’.format(

↪→ chirp_mass_samples_summary.median))

54 print(’The 90% confidence interval for the chirp mass is {} - {}

↪→ Msun’.format(chirp_mass_samples_summary.

↪→ lower_absolute_credible_interval,chirp_mass_samples_summary.

↪→ upper_absolute_credible_interval))

55
56 # Calculating effective spin

57
58 eff_spin = (samples[’m1_source_frame_Msun’]*samples[’spin1’]*

↪→ samples[’costilt1’] + samples[’m2_source_frame_Msun’]*

↪→ samples[’spin2’]*samples[’costilt2’]) / (samples[’

↪→ m1_source_frame_Msun’] + samples[’m2_source_frame_Msun’])

59 print(’mean’, eff_spin.mean())

60 summary = bilby.core.utils.SamplesSummary(samples=eff_spin, average

↪→ =’median’)

61 print(’The 90% confidence interval for chi effective is {} - {} ’.

↪→ format(summary.lower_absolute_credible_interval, summary.

↪→ upper_absolute_credible_interval))
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