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Abstract

Gravitational waves (GWs), ripples in spacetime predicted by Einstein’s theory of
general relativity, offer a unique window into the cosmos. As detectors achieve greater
sensitivity, the phenomenon of gravitational lensing, where massive objects bend these
waves, is increasingly significant. This study addresses the critical need for accurate
search and parameter estimation of gravitationally lensed GWs to avoid biases intro-
duced by neglecting lensing effects. Focusing on microlensing, we first establish the im-
pact of lensing on GW waveforms and parameter estimation using Bayesian analysis.
Traditional methods, while accurate, are computationally intensive, motivating the use
of machine learning approaches. We employ two methods, namely Neural Posterior Esti-
mation (NPE) with conditional normalizing flows to approximate posterior distributions,
enabling rapid and reliable parameter estimation, and Bayesian Neural Network (BNN).
By training on simulated datasets of lensed waveforms, we demonstrate the efficacy of
NPE method in recovering source properties, significantly reducing computational over-
head without compromising accuracy. Results validate the approach for microlensing and
highlight avenues for extending this framework to more complex lensing scenarios. This
work paves the way for integrating advanced machine learning tools into gravitational
wave astronomy, improving the detection and characterization of lensed signals in the
upcoming era of high-precision GW observatories. BNN work is still under progress but
we get good results which tell us that we can continue exploring the field. Additionally
we have showed the power of Physics Informed Neural Network (PINN) to help solve
complex physical problems by finding solution to the diffraction and integral equations.

1 Introduction

Gravitational Waves are ripple in the fabric of spacetime; they stretch and squeeze the space-
time fabric as they travel across the Universe. Gravitational Waves were predicted by Albert
Einstein using his field equations,

Rµν −
1

2
Rgµν = κTµν (1)

by solving them under the condition of small perturbation in the background metric and
considering the propagation in the empty space (thus implying Tµν = 0). We get the final
solution in the form of two polarizations of gravitational waves, namely the plus polarisation
(h+) and the cross polarisation (h×). The first direct detection of GWs were made using Laser
Interferometer and Gravitational Wave Observatory (LIGO) and since then 90 events have
been detected.

Gravitational Lensing (GL) is an another phenomena which have been predicted by Albert
Einstein which explains why waves and light rays bend in the presence of a gravitational field
[1]. With the development of detector being more sensitive to higher redshifts there is higher
probability of detecting gravitationally lensed gravitational waves. So, we need to develop
mechanism so that we can do proper inference on those GWs, because if we don’t consider
lensing effect, we will inherently introduce bias in our results. In this paper, we will first cover
the basics of lensing, and how they differ in case of EM waves and Gravitational Waves; then
we will introduce the concept of parameter estimation using Bayesian analysis and see what
effects do lensing have in the waveform and their parameter estimation; then we will cover the
machine learning approach we are using to do parameter estimation and lastly we present the
results we have obtained so far, along with future prospects of our project.
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2 Gravitational Lensing

Gravitational Waves and EM waves travel along null geodesic. And, GL is the theory of
lightlike geodesic in Lorentzian manifold. Lensing is caused because the spacetime is curved
due to a presence of massive object.

While working with Gravitational Lensing of Gravitational Waves, we need to consider certain
aspects according to which we decide to either work in geometric optics or wave optics. We
will introduce some basic concepts of lensing before going to description of geometrical and
wave optics regime. While introducing the basic concepts we will use consider deflection of
light rays which more or less is valid for gravitational waves.

2.1 Basics of Gravitational Lensing

We know that gravitational lensing is bending of light or GWs when there is a curvature in
the spacetime. Before going to the much rigorous definitions we will first introduce some basic
terms which will be helpful later on in our study, like deflection angle, which is the angle by
which the light rays or GWs deflect when encountering a mass in the between the trajectory;
Shapiro time delay, which is the time delay caused due to the presence of gravitational field;
Lens equation, which governs the dynamics of lensing; Amplification factor, which tells that
by what factor the light flux or GW amplitude is amplified due to lensing effect; Fermat’s
Principle, which tells that light travels along the path for which it takes least time, and then
we will go on to discuss the specific case of lensing of GWs where we need to consider wave
optics effects.

We will start with Point mass lens because it’s easier to treat this particular case and we can
easily extend this concept to more complicated lens system.

2.1.1 Point Mass Lens

When light rays encounter a massive object they suffer some deflection which is measured as
deflection angle. The deflection angle can be obtained from the knowledge of the trajectory
of the light rays, which correspond to null geodesies and are hence solutions of the geodesic
equations. We will consider Schwarzschild metric because we have spherical symmetry due to
a point like mass and we also note that the trajectory of a light is defined by incident light
direction and the mass location, thus we confine the light plane to be θ = π/2. Hence, the line
element that we get is as following:

ds2 =

(
1− 2GM

rc2

)
c2dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2dϕ2 (2)

We can see that our metric has t and ϕ as cyclic coordinates, which will give us two integrals
of motion:

d

dλ

∂

∂ϕ̇

(
ds

dλ

)2

= 0 −→ =⇒ r2ϕ̇ = J (3)

d

dλ

∂

∂θ̇

(
ds

dλ

)2

= 0 −→ =⇒
(
1− 2GM

rc2

)
c2ṫ = A (4)

where J and A are constants. As we are dealing with lightlike geodesics, we have
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(
1− 2GM

rc2

)
c2ṫ2 −

(
1− 2GM

rc2

)−1

ṙ2 − r2ϕ̇2 = 0 (5)

We can take our affine parameter λ such that we get c2 = A (without loss of generality). We
substitute Eq. (3) and Eq. (4) in Eq. (5) to obtain:

ṙ2 = 1− J2

r2

(
1− 2GM

rc2

)
(6)

Now, we use Eq. (3) again to obtain the relation

dϕ =
J

r2
dr√

1− J
r2

(
1− 2GM

rc2

) (7)

Figure 2: Deflection of light ray (Ref. [8])

At the time of closest approach to M , ϕ = ϕm, r = rm and because there is not radial change
at the time of deflection, thus we also have dr/dϕ = 0. Which gives us

J =
rm√

1− 2GM
rmc2

(8)

We do a substitution as x = rm r and use the relation given in Eq. (8) to obtain

ϕm − ϕ∞ =

1∫
0

dx√
1− x2 − 2GM

rmc2
(1− x3)

(9)

Where ϕ∞ is the asymptotic value of ϕ very far in the past (the incident direction). When
rm >> rs = 2GM/c2, upon solving the RHS we directly get

ϕm − ϕ∞ =
π

2
+

2GM

rmc2
(10)

The difference of the two asymptotic directions is twice of this quantity and differs from de-
flection angle by π

2
. Thus we finally obtain

α̂ =
4GM

rmc2
(11)
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2.1.2 Time Delay

Due to the curvature of spacetime we can have time delay in the arrival of light rays as compared
to the case when there is no deflecting body. The time delay has two contributions, one known
as geometrical time delay δtgeom, and the other one is gravitational time delay δtgrav, which
is also known as Shapiro time delay, which arises from the fact that near higher gravitational
field the time slows down and distance lengths are affected. To find Shapiro time delay we first

substitute r = R
[
1 +

(
GM
2Rc2

)2]
and then introduce Cartesian coordinate system to give us:

ds2 =

(
1−GM/2Rc2

1 +GM/2Rc2

)2

c2dt2 −
(
1 +

GM

2Rc2

)4

(dx2 + dy2 + dz2) (12)

We know that in weak field limit we have g00 = 1 + 2φ
c2
. Thus, we get,

ds2 =

(
1 +

2φ

c2

)
c2dt2 −

(
1− 2φ

c2

)
(dx2 + dy2 + dz2) (13)

For simplicity we consider light ray (for which ds = 0) travelling along z-direction, thus we
have

tf − ti ≃
1

c

zf∫
zi

(
1− 2φ

c2

)
dz

δtgrav = − 2

c3

zf∫
zi

φ(z)dz (14)

2.1.3 Extended Mass Distribution

In more realistic scenario we have an extended mass distribution which acts as lens. Let’s
suppose that the density is given as ρ(x⃗). We make an assumption that the extension of this
mass distribution is small in the direction of propagation of light as compared to perpendicular
direction of light path, i.e. we work in the thin lens approximation. We project this mass
density onto the plane orthogonal to light ray direction, to get

Σ(ξ⃗) =

∫
dzρ(ξ⃗, z) (15)

where ξ⃗ is the two dimensional vector in the lens plane and z is the coordinate in the direction
of propagation of light. As we are working in the weak field limit thus we can write the total
deflection angle as:

⃗̂α(ξ⃗) =
4G

c2

∫
d2ξ′Σ(ξ⃗′)

ξ⃗ − ξ⃗′

|ξ⃗ − ξ⃗′|2
(16)

Suppose we have gravitational potential φ(ξ⃗, z) then we can write the projected gravitational
potential (projected onto the lens plane) as,
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ψ(ξ⃗) =

∫
dzφ(ξ⃗, z) (17)

and using Poisson’s equation we can write

∇2
ξψ(ξ⃗) = 4πGΣ(ξ⃗) (18)

We know that the Green’s function which satisfies 2D Laplacian is given by G = ln |ξ⃗ − ξ⃗′|
which gives the projected potential as,

ψ(ξ⃗) = 2G

∫
d2ξ′Σ(ξ⃗′) ln |ξ⃗ − ξ⃗′| (19)

Therefore, the deflection angle can be written, by using Eq. (16) and Eq. (19), as

⃗̂α(ξ⃗) =
2

c2
∇ξψ(ξ⃗) (20)

In case of extended object if we have spherical symmetry then, we can apply Gauss theorem,
to get that the deflection angle is proportional to the mass enclosed in the impact parameter,
ξ.

2.2 Gravitational Lensing of Light

2.2.1 Lens Equation

In Fig. 3, we can see that the source is located at an angular distance β, the image position
is at θ, the deflection suffered is α̂, the distance from source to lens is DLS, from source to
observer is DOS and that from observer to lens is DOL.

Figure 3: Geometry of point-like lens system [8]

From pure geometry we get the relation,

β = θ − α (21)

where we define α as the scaled deflection angle such that, α = α̂DLS

DOS
. Eq. (21) is known as

the lens equation.

We can also write this lens equation after doing some substitution and defining some constants
as,

α =
DLS

DOSDOL

4GM

c2θ
(22)
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and Einstein angle,

θE =

√
DLS

DOSDOL

4GM

c2
(23)

thus to write our lens equation as
θ2 − βθ − θ2E = 0 (24)

The solution of this lens equation gives us two values for θ, which implies that in the case of
point like lens we have two images. The significance of this Einstein’s angle is that in the case
if source lies exactly behind the lens then we will have a ring of image of the source with radial
angle equal to Einstein’s angle and also if the source is marginally displaced wrt. the optical
axis as compared to the Einstein’s angle then the separation between two images is of the order
of Einstein’s angle.

For an extended lens system we can write the lens equation in vectorial form as,

β⃗ = θ⃗ − α⃗ (25)

Using Eq. (20), we can rewrite the lens equation as,

β⃗ = θ⃗ − ∇⃗θΨ(θ⃗) (26)

where we have defined the scaled gravitational potential as,

Ψ =
2

c2
DLS

DOSDOL

ψ (27)

From Eq. (25) we can write the matrix of lens mapping as

Tij =
∂βi
∂θj

=

(
δij −

∂2Ψ

∂θi∂θj

)
(28)

Recalling that Laplacian of Ψ is proportional to the surface density
∑

(θ⃗), we can write

Tr
∂2Ψ

∂θi∂θj
= ∇2

θΨ = 2

∑
(θ⃗)∑
cr

(29)

where,
∑

cr, or the critical density is defined as,

∑
cr ≡

c2DOS

4πGDOLDLS

(30)

2.2.2 Amplification

The flux of EM waves that we receive is is proportional to surface brightness and the solid angle
it subtends. Now because the surface brightness is conserved and the solid angle it subtends
changes due to lensing, we can have amplification or de-amplification. Let’s suppose that the
solid angle subtended when there is no lens is equal to dΩ0 and the one subtended in the
presence of lens is known denoted as dΩ. Thus, the magnification is written as,
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A =
dΩ

dΩ0

(31)

Figure 4: Ray path for lensed images [8]

From Fig. 4 we can write dΩ0 = βdϕdβ and for the two images we get dΩ± = θ±dϕdθ±.
Therefore we get the magnification as,

A± =
dΩ±

dΩ0

=
θ±dθ±
βdβ

(32)

We can define Jacobian of the lens mapping as J = det (∂β⃗/∂θ⃗), and write A = J−1.

2.2.3 Caustics and Critical Curves

Before we go on to further details of lensing, we will introduce the concepts of caustics and
curves. From the relation of magnification with Jacobian, we can say that there might be some
points for which the magnification diverges. The locus of these points, in the source plane, at
which the amplification diverges is known as Caustics. The map of these caustics in the lens
plane is known as critical lines.

In reality the amplification is not infinity because the overall amplification is weighted average
of surface brightness. Caustics and critical lines are important because it tells us how many
number of images will be formed wrt. the source position in the sky. If the source is far away
from the lens, we will have only one image, but as it gets closer, we will have formation of
multiple images. Every time the source crosses the caustics, we get extra pair of images [4].
Therefore, the number of images formed in lensing is always odd (for a non-singular lens), and
this is known as Burke’s theorem.

2.2.4 Fermat’s Principle

We can write the lens equation given in Eq. (26) as,

∇⃗θ

(
1

2
(θ⃗ − β⃗)2 −Ψ

)
= 0 (33)

The first term in the parenthesis is the geometrical time delay while the second terms is
gravitational time delay. If we denote the total time delay as δt, then we can write the lens
equation as,

∇⃗θ(δt) = 0 (34)
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This is known as Fermat’s Principle. The image is formed along the direction θ⃗ where the time
delay has extremum.

2.3 Differences in Lensing of EM waves vs Gravitational Waves

Before going on to discuss about gravitational lensing of GWs, we first discuss about the
differences in gravitational lensing of EM waves and GWs, which are given as following:

• Gravitational waves are coherent in nature so they can show signs of interference.

• We calculate the strain of gravitational waves as compared the flux which we do in case
of EM waves. There the flux is changed by a magnitude of µ, whereas the amplitude
of GW is changed by a magnitude of

√
µ, where µ is the magnification caused due to

lensing.

• Gravitational waves have negligible interaction with the intervening matter. Hence, lens
objects even in optically thick region can be detected by lensing.

• The current ground based detectors function in the frequency range of ∼ 101 − 104 Hz
whereas EM observations are made in the frequency range of ∼ 106 − 1020 Hz. Which
implies that the wavelength of GWs are much longer than EM waves and thus GWs can
have diffraction effect arising when they encounter an object.

2.4 Gravitational Lensing of Gravitational Waves

We consider the propagation of gravitational waves in the presence of the gravitational poten-
tial, U(U(r) << 1), of a lens object. The background metric in this case is given as [2]

ds2 = −(1 + 2U)dt2 + (1− 2U)dr2 = g(B)
µν dx

µdxν (35)

We now introduce a perturbation hµν in the background metric, so the total metric which we
get is,

gµν = g(B)
µν + hµν (36)

Under the transverse traceless Lorentz gauge condition of hνµ;ν = 0 and hµµ = 0 we have

h;αµν;α + 2R
(B)
αµβνh

αβ = 0 (37)

and if the wavelength is smaller than the curvature of the spacetime, we have h;αµν;α = 0, thus
using Eikonal approximation we get [6]

hµν = ϕeµν (38)

where eµν is the polarization tensor which is transported parallelly along the null geodesic.
Then the change of the polarization tensor by gravitational lensing is of the order of U(<< 1)
which is very small in our observational situation, and hence we can regard the polarization
tensor as a constant. Thus, we treat the scalar wave ϕ, instead of the gravitational wave hµν ,
propagating through the curved space-time. The propagation equation of the scalar wave in
frequency domain is,
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(∇2 + ω2)ϕ̃ = 4ω2Uϕ̃ (39)

We define Amplification factor as following,

F (f) =
ϕ̃L(f)

ϕ̃(f)
(40)

We can solve Eq. (39) using Kirchhoff Integral as given in [4], to obtain,

F (f) =
DSξ

2
0

DLDLS

f

i

∫
d2x exp [2πiftd(x,y)] (41)

where ξ0 is an arbitrary length scale, x = ξ/ξ0, y = ηDL/ξ0DS, also ξ = θDOL and η = βDOS

(note that DOL and DOS have the same meaning as given in Section 2.2.1), and td is the time
delay of GW, given as,

td(x,y) =
DOSξ

2
0

DOLDLS

[
1

2
|x− y|2 − ψ(x) + ϕm(y)

]
(42)

When ftd >> 1 (also known as geometrical optics limit, or strong lensing) the integrand in
the Eq. (41) is highly oscillatory and only the stationary points of td (or δt from Eq. (34))
contribute to the integral in Eq. (41). Therefore, the integral on the lens plane (in Eq. (41))
is reduced to the sum over these images, [7] as

F (f) =
∑
j

|µj|1/2 exp [2πiftd − iπnj] (43)

where µj is the magnification of the j−th image and it is given as µj = 1/ det (∂β/∂θ), and also
nj is the Morse index where nj = 0, 1/2, and 1 represents minima, saddle point and maxima,
respectively.

2.4.1 Gravitational Lensing of GWs for Point Mass Lens

For point mass lens the surface mass density is expressed as
∑

(ξ) =MLδ
2(ξ) where ML is the

lens mass, and according to Eq. (29) the non-dimensional deflection potential is ψ(x) = lnx.
According to [3], we can do analytical integration of 41, to obtain,

F (f) = exp
[πω
4

+ i
ω

2

(
ln
ω

2
− 2ϕm(y)

)]
× Γ

(
1− i

2
ω

)
1F1

(
i

2
ω, 1;

i

2
ωy2

)
(44)

where 1F1 is the confluent hypergeometric function, ω = 8πMLzf , ϕm(y) = (xm−y)2/2− lnxm,
with xm = [y + (y2 + 4)1/2]/2 and MLz is the redshifted lens mass.

In case of ftd ∼ 1 the interference effects become dominant and we need to consider wave
optics. This leads to frequency dependent modulations of the signal, which case of point mass
lens is governed by Eq. (44). This is also known as microlensing of GWs.

The GWs under the effect of microlensing creates a beating pattern which we can see in the
Fig. 5(a) in Time Domain and in Fig. 5(b) in Frequency domain.
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((a)) ((b))

Figure 5: Microlensing of GWs

However, in case of ftd >> 1, Eq. (43) can be approximated for point mass lens to

F (f) = |µ+|1/2 − i|µ−|1/2ei2πftd (45)

where |µ±| = 1/2± (y2 + 2)/(2y
√
y2 + 4) is the magnification of each image and time delay is

as given in Eq. (42). This is also known as Strong Lensing of GWs.

For an illustrative purpose we can see the gravitational wave under strong lensing (for certain
configuration of lens mass and impact parameter) as given in Fig. 6, that the first signal is
magnified while the second signal is demagnified and they both arrive with a certain time delay.

Figure 6: Strong Lensing of Gravitational Waves
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2.5 Effect of lensing in Gravitational Waves

When we have strong lensing of gravitational waves, the amplitudes get amplified. Now the
amplitude of gravitational wave depends on mass of the binary and luminosity distance. If the
masses of the binary are high then we will have higher amplitude and vice-versa. Similarly, if
the luminosity distance is small than also the amplitude is higher. So we can see that in case
of strong lensing these two parameters get mostly affected, if we don’t be careful while doing
parameter estimation. However, for microlensing the parameters that get affected are not only
masses and luminosity distance, but the spins and other parameters get affected as well [11].
We will see much about this in Section 3.1.1.

3 Methodology

3.1 Parameter Estimation of Lensed Gravitational Waves

Given a detection, Bayesian inference is used to characterize the originating source. This is
based on having models for the signals and the detector noise. For gravitational waves, signal
models take the form of waveform predictions h(θ) depending on the source parameters θ
(masses, location, etc.). Waveform models are based on solutions to Einstein’s equations (and
any relevant matter equations) for the two-body dynamics and gravitational radiation, using a
combination of numerical-relativity and perturbative calculations and phenomenological fitting.
Detector noise is typically modelled as stationary and Gaussian, with some spectrum which can
be estimated empirically. Together, these “forward” models give rise to the likelihood L(d|θ)
for the observed strain data d, which is assumed to consist of a signal plus noise. With the
choice of a prior π(θ) over parameters, the posterior distribution is given via Bayes’ theorem,

p(θ|d) = L(d|θ)π(θ)
Z

(46)

The task of inference is to characterize the posterior by drawing samples from it. This can be
accomplished with stochastic algorithms like Markov chain Monte Carlo (MCMC). The LVC
have developed software tools such as LALInference and Bilby to carry this out. However,
these algorithms are computationally expensive as they require many likelihood evaluations
for each independent posterior sample θ ∼ p(θ|d), and each likelihood requires a waveform
simulation. An analysis producing ∼ 104 independent samples typically requires millions of
waveform evaluations and a total inference time of hours to months, depending on the signal
duration and waveform model.

In this study we are using a large number of simulated data sets (with associated parameters),
and use these to train a type of neural network known as a normalizing flow to approximate the
posterior. The trained network can then generate new posterior samples extremely quickly once
a detection is made. This bypasses the need to generate waveforms at inference time, thereby
amortizing the expensive training costs over all future detections. The general approach of
building such “surrogate” inverse models is called neural posterior estimation.

3.1.1 Model Comparison: Microlensed vs Unlensed

Before going on to do parameter estimation of lensed gravitational waves, we will first do testing
of lensed and unlensed hypothesis. We generated lensed and unlensed waveform and found the
Fitting factor at each point of (Mlz, y), where the distribution in Mlz has been assumed to be
LogUniform and PowerLaw (with α = 0) for the distribution of y.
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Figure 7: Fitting Factor

We can see in the plot that the fitting factor reduces as we go to higher lens mass and small
impact parameter, implying that we need to be careful when trying to infer source parameter
in this region. If we do not stay careful then we will introduce bias in our results of parameter
estimation.

For this study a lensed waveform was generated using bilby and we tried to recover the source
properties using two different models: an unlensed model and a lensed model. We are using
gwmat [10], a Python library, to generate microlensed waveform. The parameter estimation
done for each case is given below:

Figure 8: Parameter Estimation using Unlensed model
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Figure 9: Parameter Estimation using Lensed model

The plots we got are in accordance with the statement we have written in Section 2.5, i.e.
when we tried to recover the lensed waveform using the unlensed model, we can see that the
chirp mass and mass ratio have been overestimated, while the luminosity distance has been
underestimated, in Fig. 8. Whereas, in Fig. 9 we can see that all the parameters have been
properly recovered when we tried to recover the lensed waveform with the lensed model.

This study gives the motivation of why do we need to consider lensing effects while doing
parameter estimation.

3.2 Machine Learning Approach for Parameter Estimation

The traditional parameter estimation is computationally expensive and we need to employ
other methods which can reduce the computational time but at the same time maintain the
accuracy. For this purpose we will be using machine learning approach which has proven to be
very helpful in the field of astrophysics recently.

3.2.1 Finding Posterior Distribution: Introduction to NPEs

For finding posterior distribution we will be using Neural Posterior Estimation (NPE). The
package we are using is known as Dingo [9]. The basic idea is to produce a large number
of simulated data sets (with associated parameters), and use these to train a type of neural
network known as Normalizing Flows to approximate the posterior. In normalizing flow, we
start with a simple distribution, such as a uniform distribution, and transform it using a
composition of bijective functions. This allows us to represent the posterior distribution. This
process can be modelled using the formula given in Eq. (47).
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qL(θL)dθL = q0(θ0)dθ0

qL(θL) = q0(f
−1(θL))

L∏
i=1

∂f−1(θL)

∂θL
(47)

We can also see how the Normalizing Flow works in an illustration in Fig. 10.

Figure 10: Normalizing Flows [13]

Here, each fi’s are known as flows.

The trained network can then generate new posterior samples extremely quickly once a de-
tection is made. This bypasses the need to generate waveforms at inference time, thereby
amortizing the expensive training costs over all future detections. The general approach of
building such “surrogate” inverse models is called NPE.

3.2.2 Model architecture

The architecture consists of two components, the embedding network which compresses the
high-dimensional data to a lower dimensional feature vector, and the conditional normalizing
flow which estimates the Bayesian posterior based on this feature vector.

The embedding network compresses the high-dimensional conditioning information (consisting
of frequency domain strain and PSD data). The first layer of this network is initialized with
an SVD matrix from a reduced basis built with non-noisy waveforms. This projection filters
out the noise that is orthogonal to the signal manifold, and significantly simplifies the task for
the neural network.

The initial compression layer is followed by a sequence of residual blocks consisting of dense
layers for further compression.

We use the neural spline flow as a density estimator. This takes the output of the embedding
network as context information and estimates the Bayesian posterior distribution.

The posterior distribution is represented in terms of an invertible normalizing flow, taking
normally-distributed random variables u into posterior samples θ. The flow therefore depends
on a (compressed) representation of the noise properties Sn and the data d. The model archi-
tecture diagram is as shown in Fig. 11.
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Figure 11: Neural Network Architecture

3.2.3 Preparation of Data

Dingo [9] provides the facility to generate a dataset of waveforms and store it in the form of
a hdf5 file. We made modifications to the code so that it generates lensed gravitational waves
(microlensed). The prior settings we used to generate the lensed waveforms is given in Table
1,

Parameter Range Distribution
m1,m2 (10, 80) M⊙ Constraint
M (15, 100) UniformInComponentChirpMass
µ (0.125, 1) UniformInComponentMassRatio
dl (100, 6000) Uniform
θjn (0, π) Sine
ψ (0, 2π) Uniform
χ1 (0, 0.9) AlignedSpin
χ2 (0, 0.9) AlignedSpin

logMlz (−1, 5) LogUniform
yl (0.001, 5) PowerLaw (α = 1)

Table 1: Prior distribution of the waveform dataset

Where the last two parameters correspond to the point lens system, the log of lens mass and
impact parameter of the gravitational wave source with respect to lens. For this study we
generated 2000 samples and conditioned it on O1 PSD.

3.2.4 Training Neural Network Model

Before starting the training process, we need to define certain hyper-parameters, which are
adjustable parameters in a neural network model that we set manually. They can be modified
to optimize the model’s performance. Some of the key hyper-parameters that we defined are
as given in Table 2.
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Hyper-parameter Value
Number of flows 10

Activation Function Elu
Learning Rate 0.0001

Learning Rate Scheduler Cosine
Epochs 50

Table 2: Hyper-parameters for Neural Network

The conditional neural density estimator q(θ|d) is initialized randomly and must be trained
to become a good approximation to the posterior p(θ|d). To achieve this, one must specify a
target loss function to minimize. In this project we are trying to minimize the Kullback-Leibler
(KL) divergence of p from q,

DKL(p||q) =
∫
dθp(θ|d) log p(θ|d)

q(θ|d)
(48)

We use “forward KL divergence” and take expectation over data samples d ∼ p(d) and we drop
the numerator form log term as it does not depend on network parameters, to arrive at loss
function which is given as:

L =

∫
ddp(d)

∫
dθp(θ|d)[− log q(θ|d)] (49)

=

∫
dθp(θ)

∫
ddp(d|θ)[− log q(θ|d)] (50)

We arrive at Eq.50 from Eq.49 using Bayes’ theorem p(d)p(θ|d) = p(θ)p(d|θ)

We can approximate the loss function as following:

L ≈ − 1

N

N∑
i=1

log q(θ(i))|d(i) (51)

We then take gradient of L with respect to our neural network parameters and minimize the
Loss function by adjusting these parameters using an Optimizer known as “Adam Optimizer”,
and learning rate as given in the equation below

λj := λj − α
∂

∂λj
L (52)

where λj is the j−th parameter of the neural network and α is the learning rate. We used
a learning rate scheduler to ensure the training process converges after a certain number of
epochs. In simple terms, if the initial learning rate is too high, the model may oscillate around
the minimum of the loss function without settling. Conversely, if the learning rate is too low,
convergence will be very slow, taking much longer to reach the minimum.

Training was done on Sarathi cluster of IUCAA and due to the small size of this model it took
only ∼ 25 minutes, whereas full production scale model will take around 10 days with a single
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A100 NVIDIA GPU as mentioned in [9], and without GPU it will take a month time to train.
But when trained the inference is very fast. The train and test loss we obtained is given in
Fig. 12

Figure 12: Train and Test Loss

The training and testing process show no sign of overfitting, in which case the train loss curve
would have reduced while the test loss curve would have diverged, and also it shows no sign of
underfitting, in which case neither the training loss nor the test loss would have reduced with
respect to epochs.

3.3 Bayesian Neural Network Approach

Bayesian Neural Networks (BNNs) are a class of probabilistic models that integrate Bayesian
inference into the traditional framework of neural networks. This integration allows BNNs
to quantify uncertainty in model predictions, making them particularly useful in situations
where uncertainty quantification is crucial, such as in medical diagnosis, autonomous systems,
and financial forecasting. Traditional neural networks provide point estimates for predictions;
however, they do not express uncertainty about the predictions, which can be a significant
limitation, especially in high-risk or highly variable domains. Bayesian methods, on the other
hand, offer a natural way to represent uncertainty by treating the weights of the network as
probability distributions rather than fixed values.

In a standard neural network, the learning process involves adjusting the weights to minimize a
loss function, typically using methods such as stochastic gradient descent (SGD). These models,
however, assume that the learned weights are deterministic, which means they do not account
for the fact that the optimal weights could vary due to noise in the data, model misspecification,
or other sources of uncertainty. Bayesian Neural Networks address this limitation by introduc-
ing a probabilistic framework where the network’s parameters are not fixed but are treated as
random variables with associated probability distributions. This probabilistic treatment allows
BNNs to not only make predictions but also provide a measure of uncertainty associated with
those predictions.

The core idea of BNNs is rooted in Bayes’ theorem, which allows for the updating of the dis-
tribution over the network’s parameters based on observed data. The posterior distribution
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over the parameters is typically intractable to compute exactly, leading to the need for approx-
imate inference methods. Various techniques, such as Markov Chain Monte Carlo (MCMC),
Variational Inference (VI), and Monte Carlo Dropout, have been proposed to approximate the
posterior distribution. These methods allow the model to capture complex relationships be-
tween inputs and outputs while also providing uncertainty estimates that are valuable in many
real-world applications.

One of the key benefits of Bayesian Neural Networks is their ability to handle small data
or noisy data scenarios more effectively than traditional deep learning models. Because they
can quantify uncertainty, BNNs can avoid overfitting by incorporating prior knowledge about
the problem domain or adjusting their confidence in the predictions. This characteristic is
particularly beneficial in domains with limited labeled data, where traditional models might
fail to generalize well.

3.4 Preparation of Data and Training

We have generated 10 training dataset, which is small but we wanted to test the performance
of our model. The waveform dataset is simulated using PyCBC [12] and the parameters which
are sampled are the component masses and luminosity distance (note that we are not taking
lensed data because this is just a test version). Then we are using 3 Bayesian Linear Layer
using torchbnn 1, with ReLU as 2 non-linear activation function. We are using Adam optimizer
to adjust the neural network parameters so that our BNN model can get trained. The training
epoch is set to 500.

4 Results

4.1 For Neural Posterior Estimation Model

The trained machine learning model was used to make inference on an injected data (as we
have no evidence of lensed gravitational wave), which took around 5 seconds, and the results for
the same are given below in Fig. 13. The inference was made on chirp mass, ratio, luminosity
distance, impact parameter, and Log of redshifted lens mass.

As shown in Fig. 13, the posterior distributions are reasonably accurate, especially given that
the neural network model used was relatively small. However, there is room for improvement,
and further tuning of the hyper-parameters could enhance the model’s performance, which will
be done in nearby future.

1Link for BNN doc.
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Figure 13: Corner Plot using Dingo (modified)

4.2 For Bayesian Neural Network Model

We created a simulated data with fixed parameters as: mass 1 = 10, mass 2 = 40, luminosity
distance = 870, and then we made inference on that using our trained BNN model. The pre-
dicted values are 20.18±2.50, 58.11±2.63 and 799.95±14.32 for mass 1, mass 2 and luminosity
distance, respectively. The results are close but not very accurate, and the possible reason for
that could be less number of training data, or the fact that our BNN model architecture is
simple. This is stil la work in progress and we are working on it to improve the model.

5 Conclusion and Future Prospects

In this project, we introduced the concept of gravitational lensing and explained why it is
important to consider lensing effects when conducting searches and parameter estimation for
gravitational waves. We demonstrated this by comparing parameter estimation performed
on lensed waveforms using both lensed and unlensed models. Our results highlighted how
neglecting lensing can lead to biased outcomes if not handled carefully.

We then discussed the motivation for using machine learning in gravitational wave parameter
estimation. While traditional methods like LALInference and Bilby are effective, machine
learning offers the advantage of significantly reducing computation time while maintaining
accuracy. To illustrate this, we presented the results obtained so far. To achieve these results,
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we modified the Dingo code to generate lensed waveforms and trained a machine learning model
on this data.

In this study, we focused on the point-mass lens model. However, in more realistic scenarios,
we encounter extended objects like star clusters, galaxies, or galaxy clusters as lenses. Our
future goal is to develop a model capable of performing parameter estimation for gravitational
wave sources alongside more complex lensing systems, extending beyond the point-mass lens
framework.

Also we plan to build a machine learning model that can help us solve Eq. (41), as it is
impossible to solve it analytically and numerical solution for it, as provided by [5] and many
other, is computationally expensive. We generated a plot to visualize the time complexity for
computing amplification factor, using numerical approach, and it is given in Fig. 14.

Figure 14: Computational Time Complexity for calculating Amplification Factor

We have built a Physics Informed Neural Network Model that can solve this problem for a case
for which we do have analytical solution available (point mass lens) such that 71% of predicted
amplification factor lie within an error margin of 15%. But we would like to improve this and
build upon this to predict amplification factor for complex lens systems.
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