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1 Introduction

Hawking radiation is a quantum phenomena and it was proposed by Stephen Hawking.
Hawking predicted that there is creation of particle and anti-particle pair near the Event
Horizon of Black Hole, due to intense gravity and when these particles gets separated,
one of them goes into the vast Universe, while the other one is absorbed by the Black
Hole. The energy lost during this process is released in the form of radiation known as
Hawking Radiation. We will be using Qiskit to create a model of Hawking radiation,
by finding the eigenvalues of a rotating, non-charged black hole, for which we will use
VQE (Variational Quantum Eigensolver algorithm).

2 Black Hole Metric

We will be working with a spherically symmetric, non-rotating black hole. We know that
Einstein’s field equations are given as

Rµν −
1

2
Rgµν = κTµν

In a matter free space the term Tµν goes to zero and the solution of above equation in a
matter free space, is given by Birkhoff’s theorem, which is ∇µG

µν = 0, and is known as
Schwarzschild solution. The Schwarzschild metric is then given as:

ds2 = −
(
1− 2M

R

)
dt2 +

(
1− 2M

R

)−1

dR2 +R2dΦ2

where dΦ2 = dθ2 + sin2 θdϕ2. We note that, we are working in Planck’s units, so G = c
= 1.

The complete derivation is quite lengthy but I have done some if it and is available
on my website, and the link for the same is here.

Now let’s we consider an isotropic radius, r, such that

R = r

(
1 +

M

2r

)2

And before transforming our metric, we calculate some useful relations

dR =

[(
1 +

M

2r

)2

+ 2r

(
1 +

M

2r

)(
−M

2r2

)]
dr

=

[(
1 +

M

2r

)(
1 +

M

2r
− M

r

)]
dr

=

(
1 +

M

2r

)(
1− M

2r

)
dr
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which then implies that

dR2 =

(
1 +

M

2r

)2(
1− M

2r

)2

dr2

(
1− 2M

R

)
= 1− 2M

r
(
1 + M

2r

)2
=
r
(
1 + M

2r

)2 − 2M

r
(
1 + M

2r

)2
=

(
1 + M

2r

)2 − 2M/r(
1 + M

2r

)2
=

(1−M/2r)2

(1 +M/2r)2

(
1− 2M

R

)−1

dR2 =
(1 +M/2r)2

(1−M/2r)2

(
1 +

M

2r

)2(
1− M

2r

)2

dr2

=

(
1 +

M

2r

)4

dr2

Now we can write the Schwarzschild metric as following:

ds2 = −(1−M/2r)2

(1 +M/2r)2
dt2 +

(
1 +

M

2r

)4

dr2 +

(
1 +

M

2r

)4

dΦ2

= −(1−M/2r)2

(1 +M/2r)2
dt2 +

(
1 +

M

2r

)4

(dr2 + dΦ2)

We will be needing to transform this metric into rectangular coordinate system, such that

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

r2 = x2 + y2 + z2

and in doing so we can see that
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dr2 = dx2 + dy2 + dz2

r2dθ2 = dx2 + dy2 + dz2

r2 sin2 θdϕ2 = dx2 + dy2 + dz2

Thus our Schwarzschild metric can be written in following form:

ds2 = −(1−M/2r)2

(1 +M/2r)2
dt2 +

(
1 +

M

2r

)4

(dx2 + dy2 + dz2)

Now to form a Hamiltonian we need to do 3+1 Decomposition of this metric. For our
case we can take the time slicing as a function of coordinate variable t, and thus we get
the spatial metric γij as the coefficients of (dx2 + dy2 + dz2):

γij =

(
1 +

M

2r

)4

ηij (1)

where, i, j = 1, 2, 3.

or we can say that proper distance in our each time slice, Σ can be written as

ds2 =

(
1 +

M

2r

)4

(dx2 + dy2 + dz2) (2)

We can obtain Lagrangian from this equation by dividing throughout with ds2, as we can
see that, then the RHS becomes like a Kinetic energy terms, and L = T − U .

Due to our choice of time-slicing function as t, we can see that our spatial metric is
independent of time, which means that our metric tensor remains constant throughout
the time evolution. Thus we can say that the Hamiltonian is constant wrt. time. Now
with the help of Jacobi’s formulation of the principle of least action and inverse of Eq.
(2), we can define the Hamiltonian for a non-rotating black hole as follows:

Hd =
1

2

(
1 +

M

2r

)1/4
[
(pdx)

2

2
+

(pdy)
2

2
+

(pdz)
2

2

]

3 Discretization of Hamiltonian

To solve this Hamiltonian in a quantum computer we need to discretize it. So let’s take
a space of x, y ∈ [−L,L] such that x, y each has N eigenvalues. We finally obtain a mesh
with N2 spatial elements, where each element corresponds to an eigenvalue specific to the
x and y value for that element. Let the mesh be centered at [0, 0] then we have an N ×N
matrix for the position operator, with position eigenvalues lying along the diagonal. The
position operator is given as (for N = 4):
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xd =

√
π

8
·


−2 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 1


Now we find pd using the following relation:

pd = (F d)−1xdF d = (F d)†xdF d

where F d is the discrete Fourier transform (DFT) matrix, (F d)−1 is its inverse (which
equals its conjugate transpose (F d)† due to unitarity). For a general N , we have

[F d]j,k =
exp i2πjk/N

N1/2

First Row ((j = 0)):

[F d]0,0 =
exp

(
i2π · 0·0

4

)
2

=
1

2
; [F d]0,1 =

exp
(
i2π · 0·1

4

)
2

=
1

2

[F d]0,2 =
exp

(
i2π · 0·2

4

)
2

=
1

2
; [F d]0,4 =

exp
(
i2π · 0·4

4

)
2

=
1

2

Second Row ((j = 1)):

[F d]1,0 =
exp(i2π · 1 · 0/4)

2
=

1

2

[F d]1,1 =
exp(i2π · 1 · 1/4)

2
=

exp(iπ/2)

2
=
i

2

[F d]1,2 =
exp(i2π · 1 · 2/4)

2
=

exp(iπ)

2
=

−1

2

[F d]1,3 =
exp(i2π · 1 · 3/4)

2
=

exp(i3π/2)

2
=

−i
2

Third Row ((j = 2)):

[F d]2,0 =
exp(i2π · 2 · 0/4)

2
=

1

2

[F d]2,1 =
exp(i2π · 2 · 1/4)

2
=

exp(iπ)

2
=

−1

2

[F d]2,2 =
exp(i2π · 2 · 2/4)

2
=

exp(i2π)

2
=

1

2

[F d]2,3 =
exp(i2π · 2 · 3/4)

2
=

exp(i3π)

2
=

−1

2
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Fourth Row ((j = 3)):

[F d]3,0 =
exp(i2π · 3 · 0/4)

2
=

1

2

[F d]3,1 =
exp(i2π · 3 · 1/4)

2
=

exp(i3π/2)

2
=

−i
2

[F d]3,2 =
exp(i2π · 3 · 2/4)

2
=

exp(i3π)

2
=

−1

2

[F d]3,3 =
exp(i2π · 3 · 3/4)

2
=

exp(i9π/2)

2
=
i

2

Thus the DFT matrix F4 for N = 4 is:

F4 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


Since the DFT matrix is unitary, its inverse is its conjugate transpose:

F †
4 = F−1

4 =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


To compute pd = F †

4x
dF4, we follow the given steps:

1. First, we multiply xd by F4:

xd · F4 =

√
π

8
·


−2 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 1

 · 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


This results in:

xd · F4 =

√
π√

8 · 4
·


−2 −2 −2 −2
−1 −i 1 i
0 0 0 0
1 −i −1 i


2. Next, we multiply by F †

4 :

F †
4 · (xd · F4) =

√
π

8
√
2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



−2 −2 −2 −2
−1 −i 1 i
0 0 0 0
1 −i −1 i


Performing the matrix multiplication gives:

pd =

√
π

8
√
2


−2 −2− 2i −2 −2 + 2i

−2 + 2i −2 −2 + 2i −2
−2 −2 + 2i −2 −2− 2i

−2− 2i −2 −2− 2i −2
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Now in order to make measurements, we need to account for higher dimension. For this
we take tensor product of (pd)2 with Identity matrix, this is because measurement made
in one momentum space is independent of the presence of other other momnetum spaces.
So, we can write our Hamiltonian as:

Hd =
1

2

(
1 +

M

2r

) 1
4

[(pd)2 ⊗ I ⊗ I + I ⊗ (pd)2 ⊗ I + I ⊗ I ⊗ (pd)2] (3)

4 Variational Quantum Eigensolver

We follow the given algorithm:

1. Ansatz Preparation: Start by preparing an ansatz, which is used to search for
the ground state wave function, ψ(θ⃗), for the given Hamiltonian.

2. Initial Parameters:The initial parameters θ⃗ of the ansatz are chosen randomly.

3. Apply the Hamiltonian: Once the wave function is prepared, apply the Hamil-
tonian operator and perform measurements to obtain the energy eigenvalue En.

4. Classical Optimization: We use a classical optimizer to update the parameters θ⃗
in order to minimize the energy eigenvalue and approach the ground state energy,
Eg.

5. Iterative Process: The updated parameters θ⃗ are used as new ansatz parameters,
and the process is repeated.

6. Stopping Criterion: The iteration continues for a maxiter.

7. Optimizer Choice: In this case, the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) optimizer is used to find the upper bound of the energy eigen-
value for different values of M (mass) and r (radial distance) in the Hamiltonian.

The code that I wrote to perform the above tasks is given below:

Some important packages to import

1 import numpy as np

2 from qiskit import Aer

3 from qiskit.circuit import Parameter

4 from qiskit.algorithms import VQE

5 from qiskit.algorithms.optimizers import SPSA

6 from qiskit.opflow import X, I, PauliSumOp

7 from qiskit import QuantumCircuit

8 from qiskit.utils import QuantumInstance

9 import matplotlib.pyplot as plt

10 from scipy.linalg import eigh

Defining Hamiltonian for my system

1 def create_hamiltonian(M, r):
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2 coefficient = 0.5 * (1 + M / (2 * r)) ** 0.25

3
4 terms = [

5 (’XXII’, coefficient * (np.pi / 8)),

6 (’XIII’, coefficient * (np.pi / 16)),

7 (’IXII’, coefficient * (np.pi / 8)),

8 (’IIII’, coefficient * (3 * np.pi / 16)),

9 (’IXXI’, coefficient * (np.pi / 8)),

10 (’IXII’, coefficient * (np.pi / 16)),

11 (’IIXI’, coefficient * (np.pi / 8)),

12 (’IIII’, coefficient * (3 * np.pi / 16)),

13 (’IIXX’, coefficient * (np.pi / 8)),

14 (’IIXI’, coefficient * (np.pi / 16)),

15 (’IIIX’, coefficient * (np.pi / 8)),

16 (’IIII’, coefficient * (3 * np.pi / 16))

17 ]

18
19 hamiltonian = PauliSumOp.from_list(terms)

20
21 return hamiltonian

The PauliSumOp() function is used to define quantum operators in terms of Pauli
matrices.

Here we are preparing an ansatz for my quantum circuit, where we have U3 gate on
qubit register 0 and Ry gate on the same qubit register. Thus we have a parameterized
circuit.

1 def parametrized_ansatz():

2 theta_u3 = Parameter(’x’)

3 phi_u3 = Parameter(’y’)

4 lam_u3 = Parameter(’z’)

5
6 theta_ry = Parameter(’p’)

7
8 qc = QuantumCircuit(4)

9
10 qc.u3(theta_u3, phi_u3, lam_u3, 0)

11
12 qc.ry(theta_ry, 0)

13
14 return qc, [theta_u3, phi_u3, lam_u3, theta_ry]

The pictorial representation of the circuit is given below.
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We are defining optimizer, namely perturbative stochastic approximation optimizer,
which finds and updates the parameters so that we get an upper bound for energy
eigenvalues for different values of M and r.

Also quantum instance specifies the quantum backend, here we are using the simulator
(statevector simulator) from Aer to perform simulations.

1 optimizer = SPSA(maxiter=100)

2
3 quantum_instance = QuantumInstance(Aer.get_backend(’

↪→ statevector_simulator’))

This is a function to run VQE for a given mass, which returns the computed minim-
mum eigenvalue using VQE algorithm (and optimal parameters).

1 def run_vqe_for_mass(M, r):

2 hamiltonian = create_hamiltonian(M, r)

3
4 ansatz, parameters = parametrized_ansatz()

5
6 vqe = VQE(ansatz, optimizer, quantum_instance=quantum_instance)

7
8 result = vqe.compute_minimum_eigenvalue(hamiltonian)

9 return result.eigenvalue.real, result.optimal_parameters

Now we are using the following function to compute exact eigenvalues using matrix
diagonalization from scipy.linalg.eigh module and finally return the minimum eigen-
value.

1 def compute_exact_eigenvalue(hamiltonian):

2 matrix = hamiltonian.to_matrix().real

3
4 eigenvalues, _ = eigh(matrix)

5
6 return np.min(eigenvalues)

9



Now we vary mass from 1 to 10, keeping radius fixed and store results for minimum
eigenvalue computed using VQE as well as the exact eigenvalue using scipy module.

1 r = 1.0

2 results = []

3 for M in range(1, 17):

4 vqe_eigenvalue, optimal_parameters = run_vqe_for_mass(M, r)

5
6 hamiltonian = create_hamiltonian(M, r)

7 exact_eigenvalue = compute_exact_eigenvalue(hamiltonian)

8
9 results.append((M, vqe_eigenvalue, exact_eigenvalue))

10
11 print(f"Mass: {M}, VQE Minimum Eigenvalue: {vqe_eigenvalue}, Exact

↪→ Minimum Eigenvalue: {exact_eigenvalue}")

Plotting the results

1 masses = [result[0] for result in results]

2 vqe_eigenvalues = [result[1] for result in results]

3 exact_eigenvalues = [result[2] for result in results]

4
5 plt.plot(masses, vqe_eigenvalues, marker=’o’, label=’VQE’)

6 plt.plot(masses, exact_eigenvalues, marker=’x’, label=’Exact’,

↪→ linestyle=’--’)

7 plt.xlabel(’Mass (M)’)

8 plt.ylabel(’Minimum Eigenvalue’)

9 plt.title(’Minimum Eigenvalue vs Mass (VQE vs Exact)’)

10 plt.legend()

11 plt.grid(True)

12 plt.show()

The final output of thee above code is:
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Figure 1:

Now for Radius versus Energy Eigenvalue we modify the above code’s last parts as:

1 M_fixed = 5.0

2 results = []

3 r_values = np.linspace(1.0, 10.0, 16)

4
5 for r in r_values:

6 vqe_eigenvalue, optimal_parameters = run_vqe_for_radius(M_fixed, r)

7
8 hamiltonian = create_hamiltonian(M_fixed, r)

9 exact_eigenvalue = compute_exact_eigenvalue(hamiltonian)

10
11 results.append((r, vqe_eigenvalue, exact_eigenvalue))

12
13 print(f"Radius: {r:.2f}, VQE Minimum Eigenvalue: {vqe_eigenvalue:.4

↪→ f}, Exact Minimum Eigenvalue: {exact_eigenvalue:.4f}")

14
15 radii = [result[0] for result in results]

16 vqe_eigenvalues = [result[1] for result in results]

17 exact_eigenvalues = [result[2] for result in results]

18
19 plt.plot(radii, vqe_eigenvalues, marker=’o’, label=’VQE’)

20 plt.plot(radii, exact_eigenvalues, marker=’x’, label=’Exact’,

↪→ linestyle=’--’)

21 plt.xlabel(’Radius (r)’)

22 plt.ylabel(’Minimum Eigenvalue’)

23 plt.title(’Minimum Eigenvalue vs Radius (VQE vs Exact)’)

24 plt.legend()

25 plt.grid(True)

26 plt.show()
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Figure 2:

5 Conclusion

From the two plots that we got we infer following two properties for a Black Hole:

1. A black hole that has more mass has more energy than a black hole that has less
mass. (Fig. 1)

2. Also we notice that the energy of the black hole decreases at a faster rate, for small
radial distances (most likely inside the event horizon) while it decreases at a slower
pace outside the event horizon. (Fig. 2)
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